ترغب بنشر مسار تعليمي؟ اضغط هنا

Jitter Characterization of a Dual-Readout SNSPD

70   0   0.0 ( 0 )
 نشر من قبل Daniel Santavicca
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To better understand the origins of the timing resolution, also known as jitter, of superconducting nanowire single-photon detectors (SNSPDs), we have performed timing characterizations of a niobium nitride SNSPD with a dual-ended readout. By simultaneously measuring both readout pulses along with an optical timing reference signal, we are able to quantify each independent contribution to the total measured jitter. In particular, we are able to determine values for the jitter due to the stochastic nature of hotspot formation and the jitter due to the variation of the photon detection location along the length of the nanowire. We compare the results of this analysis for measurements at temperatures of 1.5 K and 4.5 K.



قيم البحث

اقرأ أيضاً

Superconducting nanowire single photon detectors (SNSPDs) are typically used as single-mode-fiber-coupled single-pixel detectors, but large area detectors are increasingly critical for applications ranging from microscopy to free-space quantum commun ications. Here, we explore changes in the rising edge of the readout pulse for large-area SNSPDs as a function of the bias current, optical spot size on the detector, and number of photons per pulse. We observe a bimodal distribution of rise times and show that the probability of a slow rise time increases in the limit of large spot sizes and small photon number. In the limit of low bias currents, the dark-count readout pulse is most similar to the combined large spot size and small-photon-number bright-count readout pulse. These results are consistent with a simple model of traveling microwave modes excited by single photons incident at varying positions along the length of the nanowire.
77 - S. Lee , A. Cardini , M. Cascella 2017
In this paper, we describe measurements of the response functions of a fiber-based dual- readout calorimeter for pions, protons and multiparticle jets with energies in the range from 10 to 180 GeV. The calorimeter uses lead as absorber material and h as a total mass of 1350 kg. It is complemented by leakage counters made of scintillating plastic, with a total mass of 500 kg. The effects of these leakage counters on the calorimeter performance are studied as well. In a separate section, we investigate and compare different methods to measure the energy resolution of a calorimeter. Using only the signals provided by the calorimeter, we demonstrate that our dual-readout calorimeter, calibrated with electrons, is able to reconstruct the energy of proton and pion beam particles to within a few percent at all energies. The fractional widths of the signal distributions for these particles (sigma/E) scale with the beam energy as 30%/sqrt(E), without any additional contributing terms.
A new design for the anode of a time projection chamber, consisting of a charge-detecting tile, is investigated for use in large scale liquid xenon detectors. The tile is produced by depositing 60 orthogonal metal charge-collecting strips, 3~mm wide, on a 10~si{cm} $times$ 10~si{cm} fused-silica wafer. These charge tiles may be employed by large detectors, such as the proposed tonne-scale nEXO experiment to search for neutrinoless double-beta decay. Modular by design, an array of tiles can cover a sizable area. The width of each strip is small compared to the size of the tile, so a Frisch grid is not required. A grid-less, tiled anode design is beneficial for an experiment such as nEXO, where a wire tensioning support structure and Frisch grid might contribute radioactive backgrounds and would have to be designed to accommodate cycling to cryogenic temperatures. The segmented anode also reduces some degeneracies in signal reconstruction that arise in large-area crossed-wire time projection chambers. A prototype tile was tested in a cell containing liquid xenon. Very good agreement is achieved between the measured ionization spectrum of a $^{207}$Bi source and simulations that include the microphysics of recombination in xenon and a detailed modeling of the electrostatic field of the detector. An energy resolution $sigma/E$=5.5% is observed at 570~si{keV}, comparable to the best intrinsic ionization-only resolution reported in literature for liquid xenon at 936~V/si{cm}.
While single-pixel superconducting nanowire single photon detectors (SNSPDs) have demonstrated remarkable efficiency and timing performance from the UV to near-IR, scaling these devices to large imaging arrays remains challenging. Here, we propose a new SNSPD multiplexing system using thermal coupling and detection correlations between two photosensitive layers of an array. Using this architecture with the channels of one layer oriented in rows and the second layer in columns, we demonstrate imaging capability in 16-pixel arrays with accurate spot tracking at the few photon level. We also explore the performance tradeoffs of orienting the top layer nanowires parallel and perpendicular to the bottom layer. The thermally-coupled row-column scheme is readily able to scale to the kilopixel size with existing readout systems, and when combined with other multiplexing architectures, has the potential to enable megapixel scale SNSPD imaging arrays.
109 - C. Chen , D. Gong , D. Guo 2020
We present a gigabit transceiver prototype Application Specific Integrated Circuit (ASIC), GBCR, for the ATLAS Inner Tracker (ITk) Pixel detector readout upgrade. GBCR is designed in a 65-nm CMOS technology and consists of four upstream receiver chan nels, a downstream transmitter channel, and an Inter-Integrated Circuit (I2C) slave. The upstream channels receive the data at 5.12 Gbps passing through 5-meter 34-American Wire Gauge (AWG) Twin-axial (Twinax) cables, equalize them, retime them with a recovered clock, and then drive an optical transmitter. The downstream channel receives the data at 2.56 Gbps from an optical receiver and drives the cable as same as the upstream channels. The jitter of the upstream channel output is measured to be 35 ps (peak-peak) when the Clock-Data Recovery (CDR) module is turned on and the jitter of the downstream channel output after the cable is 138 ps (peak-peak). The power consumption of each upstream channel is 72 mW when the CDR module is turned on and the downstream channel consumes 27 mW. GBCR survives the total ionizing dose of 200 kGy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا