ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-ergodic Convergence Analysis of Heavy-Ball Algorithms

163   0   0.0 ( 0 )
 نشر من قبل Tao Sun
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we revisit the convergence of the Heavy-ball method, and present improved convergence complexity results in the convex setting. We provide the first non-ergodic O(1/k) rate result of the Heavy-ball algorithm with constant step size for coercive objective functions. For objective functions satisfying a relaxed strongly convex condition, the linear convergence is established under weaker assumptions on the step size and inertial parameter than made in the existing literature. We extend our results to multi-block version of the algorithm with both the cyclic and stochastic update rules. In addition, our results can also be extended to decentralized optimization, where the ergodic analysis is not applicable.



قيم البحث

اقرأ أيضاً

60 - Tao Sun , Dongsheng Li , Zhe Quan 2019
Nonconvex optimization algorithms with random initialization have attracted increasing attention recently. It has been showed that many first-order methods always avoid saddle points with random starting points. In this paper, we answer a question: c an the nonconvex heavy-ball algorithms with random initialization avoid saddle points? The answer is yes! Direct using the existing proof technique for the heavy-ball algorithms is hard due to that each iteration of the heavy-ball algorithm consists of current and last points. It is impossible to formulate the algorithms as iteration like xk+1= g(xk) under some mapping g. To this end, we design a new mapping on a new space. With some transfers, the heavy-ball algorithm can be interpreted as iterations after this mapping. Theoretically, we prove that heavy-ball gradient descent enjoys larger stepsize than the gradient descent to escape saddle points to escape the saddle point. And the heavy-ball proximal point algorithm is also considered; we also proved that the algorithm can always escape the saddle point.
We focus on the solutions of second-order stable linear difference equations and demonstrate that their behavior can be non-monotone and exhibit peak effects depending on initial conditions. The results are applied to the analysis of the accelerated unconstrained optimization method -- the Heavy Ball method. We explain non-standard behavior of the method discovered in practical applications. In addition, such non-monotonicity complicates the correct choice of the parameters in optimization methods. We propose to overcome this difficulty by introducing new Lyapunov function which should decrease monotonically. By use of this function convergence of the method is established under less restrictive assumptions (for instance, with the lack of convexity). We also suggest some restart techniques to speed up the methods convergence.
In this paper we study randomized optimal stopping problems and consider corresponding forward and backward Monte Carlo based optimisation algorithms. In particular we prove the convergence of the proposed algorithms and derive the corresponding convergence rates.
The present paper is devoted to estimating the speed of convergence towards consensus for a general class of discrete-time multi-agent systems. In the systems considered here, both the topology of the interconnection graph and the weight of the arcs are allowed to vary as a function of time. Under the hypothesis that some spanning tree structure is preserved along time, and that some nonzero minimal weight of the information transfer along this tree is guaranteed, an estimate of the contraction rate is given. The latter is expressed explicitly as the spectral radius of some matrix depending upon the tree depth and the lower bounds on the weights.
Several issues in machine learning and inverse problems require to generate discrete data, as if sampled from a model probability distribution. A common way to do so relies on the construction of a uniform probability distribution over a set of $N$ p oints which minimizes the Wasserstein distance to the model distribution. This minimization problem, where the unknowns are the positions of the atoms, is non-convex. Yet, in most cases, a suitably adjusted version of Lloyds algorithm -- in which Voronoi cells are replaced by Power cells -- leads to configurations with small Wasserstein error. This is surprising because, again, of the non-convex nature of the problem, as well as the existence of spurious critical points. We provide explicit upper bounds for the convergence speed of this Lloyd-type algorithm, starting from a cloud of points sufficiently far from each other. This already works after one step of the iteration procedure, and similar bounds can be deduced, for the corresponding gradient descent. These bounds naturally lead to a modified Poliak-Lojasiewicz inequality for the Wasserstein distance cost, with an error term depending on the distances between Dirac masses in the discrete distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا