ﻻ يوجد ملخص باللغة العربية
The current work is the third of a series of three papers devoted to the study of asymptotic dynamics in the space-time dependent logistic source chemotaxis system, $$ begin{cases} partial_tu=Delta u-chi ablacdot(u abla v)+u(a(x,t)-b(x,t)u),quad xin R^N,cr 0=Delta v-lambda v+mu u ,quad xin R^N, end{cases} (0.1) $$ where $Nge 1$ is a positive integer, $chi, lambda$ and $mu$ are positive constants, the functions $a(x,t)$ and $b(x,t)$ are positive and bounded. In the first of the series, we studied the phenomena of persistence, and the asymptotic spreading for solutions. In the second of the series, we investigate the existence, uniqueness and stability of strictly positive entire solutions. In the current part of the series, we discuss the existence of transition front solutions of (0.1) connecting $(0,0)$ and $(u^*(t),v^*(t))$ in the case of space homogeneous logistic source. We show that for every $chi>0$ with $chimubig(1+frac{sup_{tin R}a(t)}{inf_{tin R}a(t)}big)<inf_{tin R}b(t)$, there is a positive constant $c^{*}_{chi}$ such that for every $underline{c}>c^{*}_{chi}$ and every unit vector $xi$, (0.1) has a transition front solution of the form $(u(x,t),v(x,t))=(U(xcdotxi-C(t),t),V(xcdotxi-C(t),t))$ satisfying that $C(t)=frac{a(t)+kappa^2}{kappa}$ for some number $kappa>0$, $liminf_{t-stoinfty}frac{C(t)-C(s)}{t-s}=underline{c}$, and$$lim_{xto-infty}sup_{tin R}|U(x,t)-u^*(t)|=0 quad text{and}quad lim_{xtoinfty}sup_{tin R}|frac{U(x,t)}{e^{-kappa x}}-1|=0.$$Furthermore, we prove that there is no transition front solution $(u(x,t),v(x,t))=(U(xcdotxi-C(t),t),V(xcdotxi-C(t),t))$ of (0.1) connecting $(0,0)$ and $(u^*(t),v^*(t))$ with least mean speed less than $2sqrt{underline{a}}$, where $underline{a}=liminf_{t-stoinfty}frac{1}{t-s}int_{s}^{t}a(tau)dtau$.
The current series of three papers is concerned with the asymptotic dynamics in the following chemotaxis model $$partial_tu=Delta u-chi abla(u abla v)+u(a(x,t)-ub(x,t)) , 0=Delta v-lambda v+mu u (1)$$where $chi, lambda, mu$ are positive constants,
This work is the second of the series of three papers devoted to the study of asymptotic dynamics in the chemotaxis system with space and time dependent logistic source,$$partial_tu=Delta u-chi ablacdot(u abla v)+u(a(x,t)-ub(x,t)),quad 0=Delta v-lamb
In this paper, we study traveling wave solutions of the chemotaxis systems begin{equation} begin{cases} u_{t}=Delta u -chi_1 abla( u abla v_1)+chi_2 abla(u abla v_2 )+ u(a -b u), qquad xinmathbb{R} taupartial_tv_1=(Delta- lambda_1 I)v_1+ mu_1 u, q
The existence of positive weak solutions to a singular quasilinear elliptic system in the whole space is established via suitable a priori estimates and Schauders fixed point theorem.
This paper is concerned with traveling wave solutions of the following full parabolic Keller-Segel chemotaxis system with logistic source, begin{equation} begin{cases} u_t=Delta u -chi ablacdot(u abla v)+u(a-bu),quad xinmathbb{R}^N cr tau v_t=Delta v