ﻻ يوجد ملخص باللغة العربية
We describe a $tilde{O}(d^{5/6})$-query monotonicity tester for Boolean functions $f:[n]^d to {0,1}$ on the $n$-hypergrid. This is the first $o(d)$ monotonicity tester with query complexity independent of $n$. Motivated by this independence of $n$, we initiate the study of monotonicity testing of measurable Boolean functions $f:mathbb{R}^d to {0,1}$ over the continuous domain, where the distance is measured with respect to a product distribution over $mathbb{R}^d$. We give a $tilde{O}(d^{5/6})$-query monotonicity tester for such functions. Our main technical result is a domain reduction theorem for monotonicity. For any function $f:[n]^d to {0,1}$, let $epsilon_f$ be its distance to monotonicity. Consider the restriction $hat{f}$ of the function on a random $[k]^d$ sub-hypergrid of the original domain. We show that for $k = text{poly}(d/epsilon)$, the expected distance of the restriction is $mathbb{E}[epsilon_{hat{f}}] = Omega(epsilon_f)$. Previously, such a result was only known for $d=1$ (Berman-Raskhodnikova-Yaroslavtsev, STOC 2014). Our result for testing Boolean functions over $[n]^d$ then follows by applying the $d^{5/6}cdot text{poly}(1/epsilon,log n, log d)$-query hypergrid tester of Black-Chakrabarty-Seshadhri (SODA 2018). To obtain the result for testing Boolean functions over $mathbb{R}^d$, we use standard measure theoretic tools to reduce monotonicity testing of a measurable function $f$ to monotonicity testing of a discretized version of $f$ over a hypergrid domain $[N]^d$ for large, but finite, $N$ (that may depend on $f$). The independence of $N$ in the hypergrid tester is crucial to getting the final tester over $mathbb{R}^d$.
A non-perturbative Renormalization Group approach is used to calculate scaling functions for an O(4) model in d=3 dimensions in the presence of an external symmetry-breaking field. These scaling functions are important for the analysis of critical be
The subject of this textbook is the analysis of Boolean functions. Roughly speaking, this refers to studying Boolean functions $f : {0,1}^n to {0,1}$ via their Fourier expansion and other analytic means. Boolean functions are perhaps the most basic o
The goal in the area of functions property testing is to determine whether a given black-box Boolean function has a particular given property or is $varepsilon$-far from having that property. We investigate here several types of properties testing fo
In this paper, we present a new, graph-based modeling approach and a polynomial-sized linear programming (LP) formulation of the Boolean satisfiability problem (SAT). The approach is illustrated with a numerical example.
This paper has been withdrawn because Theorem 21 and Corollary 22 are in error; The modeling idea is OK, but it needs 9-dimensional variables instead of the 8-dimensional variables defined in notations 6.9. Examples of the correct model (with 9-ind