ترغب بنشر مسار تعليمي؟ اضغط هنا

Domain Reduction for Monotonicity Testing: A $o(d)$ Tester for Boolean Functions in $d$-Dimensions

67   0   0.0 ( 0 )
 نشر من قبل Hadley Black
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a $tilde{O}(d^{5/6})$-query monotonicity tester for Boolean functions $f:[n]^d to {0,1}$ on the $n$-hypergrid. This is the first $o(d)$ monotonicity tester with query complexity independent of $n$. Motivated by this independence of $n$, we initiate the study of monotonicity testing of measurable Boolean functions $f:mathbb{R}^d to {0,1}$ over the continuous domain, where the distance is measured with respect to a product distribution over $mathbb{R}^d$. We give a $tilde{O}(d^{5/6})$-query monotonicity tester for such functions. Our main technical result is a domain reduction theorem for monotonicity. For any function $f:[n]^d to {0,1}$, let $epsilon_f$ be its distance to monotonicity. Consider the restriction $hat{f}$ of the function on a random $[k]^d$ sub-hypergrid of the original domain. We show that for $k = text{poly}(d/epsilon)$, the expected distance of the restriction is $mathbb{E}[epsilon_{hat{f}}] = Omega(epsilon_f)$. Previously, such a result was only known for $d=1$ (Berman-Raskhodnikova-Yaroslavtsev, STOC 2014). Our result for testing Boolean functions over $[n]^d$ then follows by applying the $d^{5/6}cdot text{poly}(1/epsilon,log n, log d)$-query hypergrid tester of Black-Chakrabarty-Seshadhri (SODA 2018). To obtain the result for testing Boolean functions over $mathbb{R}^d$, we use standard measure theoretic tools to reduce monotonicity testing of a measurable function $f$ to monotonicity testing of a discretized version of $f$ over a hypergrid domain $[N]^d$ for large, but finite, $N$ (that may depend on $f$). The independence of $N$ in the hypergrid tester is crucial to getting the final tester over $mathbb{R}^d$.



قيم البحث

اقرأ أيضاً

A non-perturbative Renormalization Group approach is used to calculate scaling functions for an O(4) model in d=3 dimensions in the presence of an external symmetry-breaking field. These scaling functions are important for the analysis of critical be havior in the O(4) universality class. For example, the finite-temperature phase transition in QCD with two flavors is expected to fall into this class. Critical exponents are calculated in local potential approximation. Parameterizations of the scaling functions for the order parameter and for the longitudinal susceptibility are given. Relations from universal scaling arguments between these scaling functions are investigated and confirmed. The expected asymptotic behavior of the scaling functions predicted by Griffiths is observed. Corrections to the scaling behavior at large values of the external field are studied qualitatively. These scaling corrections can become large, which might have implications for the scaling analysis of lattice QCD results.
76 - Ryan ODonnell 2021
The subject of this textbook is the analysis of Boolean functions. Roughly speaking, this refers to studying Boolean functions $f : {0,1}^n to {0,1}$ via their Fourier expansion and other analytic means. Boolean functions are perhaps the most basic o bject of study in theoretical computer science, and Fourier analysis has become an indispensable tool in the field. The topic has also played a key role in several other areas of mathematics, from combinatorics, random graph theory, and statistical physics, to Gaussian geometry, metric/Banach spaces, and social choice theory. The intent of this book is both to develop the foundations of the field and to give a wide (though far from exhaustive) overview of its applications. Each chapter ends with a highlight showing the power of analysis of Boolean functions in different subject areas: property testing, social choice, cryptography, circuit complexity, learning theory, pseudorandomness, hardness of approximation, concrete complexity, and random graph theory. The book can be used as a reference for working researchers or as the basis of a one-semester graduate-level course. The author has twice taught such a course at Carnegie Mellon University, attended mainly by graduate students in computer science and mathematics but also by advanced undergraduates, postdocs, and researchers in adjacent fields. In both years most of Chapters 1-5 and 7 were covered, along with parts of Chapters 6, 8, 9, and 11, and some additional material on additive combinatorics. Nearly 500 exercises are provided at the ends of the books chapters.
The goal in the area of functions property testing is to determine whether a given black-box Boolean function has a particular given property or is $varepsilon$-far from having that property. We investigate here several types of properties testing fo r Boolean functions (identity, correlations and balancedness) using the Deutsch-Jozsa algorithm (for the Deutsch-Jozsa (D-J) problem) and also the amplitude amplification technique. At first, we study here a particular testing problem: namely whether a given Boolean function $f$, of $n$ variables, is identical with a given function $g$ or is $varepsilon$-far from $g$, where $varepsilon$ is the parameter. We present a one-sided error quantum algorithm to deal with this problem that has the query complexity $O(frac{1}{sqrt{varepsilon}})$. Moreover, we show that our quantum algorithm is optimal. Afterwards we show that the classical randomized query complexity of this problem is $Theta(frac{1}{varepsilon})$. Secondly, we consider the D-J problem from the perspective of functional correlations and let $C(f,g)$ denote the correlation of $f$ and $g$. We propose an exact quantum algorithm for making distinction between $|C(f,g)|=varepsilon$ and $|C(f,g)|=1$ using six queries, while the classical deterministic query complexity for this problem is $Theta(2^{n})$ queries. Finally, we propose a one-sided error quantum query algorithm for testing whether one Boolean function is balanced versus $varepsilon$-far balanced using $O(frac{1}{varepsilon})$ queries. We also prove here that our quantum algorithm for balancedness testing is optimal. At the same time, for this balancedness testing problem we present a classical randomized algorithm with query complexity of $O(1/varepsilon^{2})$. Also this randomized algorithm is optimal. Besides, we link the problems considered here together and generalize them to the general case.
738 - Moustapha Diaby 2016
In this paper, we present a new, graph-based modeling approach and a polynomial-sized linear programming (LP) formulation of the Boolean satisfiability problem (SAT). The approach is illustrated with a numerical example.
213 - Moustapha Diaby 2014
This paper has been withdrawn because Theorem 21 and Corollary 22 are in error; The modeling idea is OK, but it needs 9-dimensional variables instead of the 8-dimensional variables defined in notations 6.9. Examples of the correct model (with 9-ind ex variables) are: (1) Diaby, M., Linear Programming Formulation of the Set Partitioning Problem, International Journal of Operational Research 8:4 (August 2010) pp. 399-427; (2) Diaby, M., Linear Programming Formulation of the Vertex Coloring Problem, International Journal of Mathematics in Operational Research 2:3 (May 2010) pp. 259-289; (3) Diaby, M., The Traveling Salesman Problem: A Linear Programming Formulation, WSEAS Transactions on Mathematics, 6:6 (June 2007) pp. 745-754.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا