ﻻ يوجد ملخص باللغة العربية
Turbulence at kinetic scales is an unresolved and ubiquitous phenomenon that characterizes both space and laboratory plasmas. Recently, new theories, {it in-situ} spacecraft observations and numerical simulations suggest a novel scenario for turbulence, characterized by a so-called phase space cascade -- the formation of fine structures, both in physical and velocity space. This new concept is here extended by directly taking into account the role of inter-particle collisions, modeled through the nonlinear Landau operator or the simplified Dougherty operator. The characteristic times, associated with inter-particle correlations, are derived in the above cases. The implications of introducing collisions on the phase space cascade are finally discussed.
We study Landau damping in the 1+1D Vlasov-Poisson system using a Fourier-Hermite spectral representation. We describe the propagation of free energy in phase space using forwards and backwards propagating Hermite modes recently developed for gyrokin
Plasma turbulence is investigated using high-resolution ion velocity distributions measured by the Magnetospheric Multiscale Mission (MMS) in the Earths magnetosheath. The particle distribution is highly structured, suggesting a cascade-like process
We study the stability of spatially periodic, nonlinear Vlasov-Poisson equilibria as an eigenproblem in a Fourier-Hermite basis (in the space and velocity variables, respectively) of finite dimension, $N$. When the advection term in Vlasov equation i
Kinetic simulations based on the Eulerian Hybrid Vlasov-Maxwell (HVM) formalism permit the examination of plasma turbulence with useful resolution of the proton velocity distribution function (VDF). The HVM model is employed here to study the balance
To explain energy dissipation via turbulence in collisionless, magnetized plasmas, the existence of a dual real- and velocity-space cascade of ion-entropy fluctuations below the ion gyroradius has been proposed. Such a dual cascade, predicted by the