ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple-Attribute Text Style Transfer

357   0   0.0 ( 0 )
 نشر من قبل Sandeep Subramanian
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The dominant approach to unsupervised style transfer in text is based on the idea of learning a latent representation, which is independent of the attributes specifying its style. In this paper, we show that this condition is not necessary and is not always met in practice, even with domain adversarial training that explicitly aims at learning such disentangled representations. We thus propose a new model that controls several factors of variation in textual data where this condition on disentanglement is replaced with a simpler mechanism based on back-translation. Our method allows control over multiple attributes, like gender, sentiment, product type, etc., and a more fine-grained control on the trade-off between content preservation and change of style with a pooling operator in the latent space. Our experiments demonstrate that the fully entangled model produces better generations, even when tested on new and more challenging benchmarks comprising reviews with multiple sentences and multiple attributes.



قيم البحث

اقرأ أيضاً

174 - Yao Fu , Hao Zhou , Jiaze Chen 2019
Text attribute transfer is modifying certain linguistic attributes (e.g. sentiment, style, authorship, etc.) of a sentence and transforming them from one type to another. In this paper, we aim to analyze and interpret what is changed during the trans fer process. We start from the observation that in many existing models and datasets, certain words within a sentence play important roles in determining the sentence attribute class. These words are referred to as textit{the Pivot Words}. Based on these pivot words, we propose a lexical analysis framework, textit{the Pivot Analysis}, to quantitatively analyze the effects of these words in text attribute classification and transfer. We apply this framework to existing datasets and models and show that: (1) the pivot words are strong features for the classification of sentence attributes; (2) to change the attribute of a sentence, many datasets only requires to change certain pivot words; (3) consequently, many transfer models only perform the lexical-level modification, while leaving higher-level sentence structures unchanged. Our work provides an in-depth understanding of linguistic attribute transfer and further identifies the future requirements and challenges of this taskfootnote{Our code can be found at https://github.com/FranxYao/pivot_analysis}.
We present a deep generative model for unsupervised text style transfer that unifies previously proposed non-generative techniques. Our probabilistic approach models non-parallel data from two domains as a partially observed parallel corpus. By hypot hesizing a parallel latent sequence that generates each observed sequence, our model learns to transform sequences from one domain to another in a completely unsupervised fashion. In contrast with traditional generative sequence models (e.g. the HMM), our model makes few assumptions about the data it generates: it uses a recurrent language model as a prior and an encoder-decoder as a transduction distribution. While computation of marginal data likelihood is intractable in this model class, we show that amortized variational inference admits a practical surrogate. Further, by drawing connections between our variational objective and other recent unsupervised style transfer and machine translation techniques, we show how our probabilistic view can unify some known non-generative objectives such as backtranslation and adversarial loss. Finally, we demonstrate the effectiveness of our method on a wide range of unsupervised style transfer tasks, including sentiment transfer, formality transfer, word decipherment, author imitation, and related language translation. Across all style transfer tasks, our approach yields substantial gains over state-of-the-art non-generative baselines, including the state-of-the-art unsupervised machine translation techniques that our approach generalizes. Further, we conduct experiments on a standard unsupervised machine translation task and find that our unified approach matches the current state-of-the-art.
162 - Youzhi Tian , Zhiting Hu , Zhou Yu 2018
Text style transfer aims to modify the style of a sentence while keeping its content unchanged. Recent style transfer systems often fail to faithfully preserve the content after changing the style. This paper proposes a structured content preserving model that leverages linguistic information in the structured fine-grained supervisions to better preserve the style-independent content during style transfer. In particular, we achieve the goal by devising rich model objectives based on both the sentences lexical information and a language model that conditions on content. The resulting model therefore is encouraged to retain the semantic meaning of the target sentences. We perform extensive experiments that compare our model to other existing approaches in the tasks of sentiment and political slant transfer. Our model achieves significant improvement in terms of both content preservation and style transfer in automatic and human evaluation.
We introduce a new approach to tackle the problem of offensive language in online social media. Our approach uses unsupervised text style transfer to translate offensive sentences into non-offensive ones. We propose a new method for training encoder- decoders using non-parallel data that combines a collaborative classifier, attention and the cycle consistency loss. Experimental results on data from Twitter and Reddit show that our method outperforms a state-of-the-art text style transfer system in two out of three quantitative metrics and produces reliable non-offensive transferred sentences.
Style transfer deals with the algorithms to transfer the stylistic properties of a piece of text into that of another while ensuring that the core content is preserved. There has been a lot of interest in the field of text style transfer due to its w ide application to tailored text generation. Existing works evaluate the style transfer models based on content preservation and transfer strength. In this work, we propose a reinforcement learning based framework that directly rewards the framework on these target metrics yielding a better transfer of the target style. We show the improved performance of our proposed framework based on automatic and human evaluation on three independent tasks: wherein we transfer the style of text from formal to informal, high excitement to low excitement, modern English to Shakespearean English, and vice-versa in all the three cases. Improved performance of the proposed framework over existing state-of-the-art frameworks indicates the viability of the approach.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا