ﻻ يوجد ملخص باللغة العربية
We consider minimizing harmonic maps $u$ from $Omega subset mathbb{R}^n$ into a closed Riemannian manifold $mathcal{N}$ and prove: (1) an extension to $n geq 4$ of Almgren and Liebs linear law. That is, if the fundamental group of the target manifold $mathcal{N}$ is finite, we have [ mathcal{H}^{n-3}(textrm{sing } u) le C int_{partial Omega} | abla_T u|^{n-1} ,d mathcal{H}^{n-1}; ] (2) an extension of Hardt and Lins stability theorem. Namely, assuming that the target manifold is $mathcal{N}=mathbb{S}^2$ we obtain that the singular set of $u$ is stable under small $W^{1,n-1}$-perturbations of the boundary data. In dimension $n=3$ both results are shown to hold with weaker hypotheses, i.e., only assuming that the trace of our map lies in the fractional space $W^{s,p}$ with $s in (frac{1}{2},1]$ and $p in [2,infty)$ satisfying $sp geq 2$. We also discuss sharpness.
We extend the results of our recent preprint [arXiv: 1811.00515] into higher dimensions $n geq 4$. For minimizing harmonic maps $uin W^{1,2}(Omega,mathbb{S}^2)$ from $n$-dimensional domains into the two dimensional sphere we prove: (1) An extension
This article addresses the regularity issue for minimizing fractional harmonic maps of order $sin(0,1/2)$ from an interval into a smooth manifold. Holder continuity away from a locally finite set is established for a general target. If the target is
We discuss a method to construct Dirac-harmonic maps developed by J.~Jost, X.~Mo and M.~Zhu in J.~Jost, X.~Mo, M.~Zhu, emph{Some explicit constructions of Dirac-harmonic maps}, J. Geom. Phys. textbf{59} (2009), no. 11, 1512--1527.The method uses harm
In this article, we improve the partial regularity theory for minimizing $1/2$-harmonic maps in the case where the target manifold is the $(m-1)$-dimensional sphere. For $mgeq 3$, we show that minimizing $1/2$-harmonic maps are smooth in dimension 2,
Families of hypersurfaces that are level-set families of harmonic functions free of critical points are characterized by a local differential-geometric condition. Harmonic functions with a specified level-set family are constructed from geometric dat