ترغب بنشر مسار تعليمي؟ اضغط هنا

The $gamma$-ray strength function for Thallium isotopes relevant to the $^{205}$Pb - $^{205}$Tl chronometry

61   0   0.0 ( 0 )
 نشر من قبل Gry Merete Tveten
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Photoneutron cross sections were measured for $^{203}$Tl and $^{205}$Tl at energies between the one- and two-neutron thresholds using quasi-monochromatic $gamma$-ray beams produced in laser Compton-scattering at the NewSUBARU synchrotron radiation facility. Our new measurement results in cross sections significantly different from the previously reported bremsstrahlung experiment, leading to rather different GDR parameters, in particular to lower GDR peak energies and higher peak cross sections. The photoneutron data are used to constrain the $gamma$-ray strength function on the basis of the Hartree-Fock-Bogolyubov plus quasi-particle random phase approximation using the Gogny D1M interaction. Supplementing the experimentally constrained $gamma$-ray strength function with the zero-limit E1 and M1 contributions for the de-excitation mode, we estimate the Maxwellian-averaged cross section for the s-process branching-point nucleus $^{204}$Tl in the context of the $^{205}$Pb - $^{205}$Tl chronometry.



قيم البحث

اقرأ أيضاً

Photoneutron cross sections were measured for $^{137}$Ba and $^{138}$Ba at energies below two-neutron threshold using quasi-monochromatic $gamma$-ray beams produced in laser Compton-scattering at the NewSUBARU synchrotron radiation facility. The phot oneutron data are used to constrain the $gamma$-ray strength function on the basis of the Hartree-Fock-Bogolyubov plus quasi-particle random phase approximation using the Gogny D1M interaction. Supplementing the experimentally constrained $gamma$-ray strength function with the zero-limit E1 and M1 contributions which are unique to the deexcitation mode, we discuss radiative neutron capture cross sections relevant to the s-process nucleosynthesis of barium isotopes in the vicinity of the neutron magic number 82.
The level densities and $gamma$-ray strength functions of $^{105,106,111,112}$Cd have been extracted from particle-$gamma$ coincidence data using the Oslo method. The level densities are in very good agreement with known levels at low excitation ener gy. The $gamma$-ray strength functions display no strong enhancement for low $gamma$ energies. However, more low-energy strength is apparent for $^{105,106}$Cd than for $^{111,112}$Cd. For $gamma$ energies above $approx$ 4 MeV, there is evidence for some extra strength, similar to what has been previously observed for the Sn isotopes. The origin of this extra strength is unclear; it might be due to $E1$ and $M1$ transitions originating from neutron skin oscillations or the spin-flip resonance, respectively.
The gamma-strength functions and level densities in the quasi-continuum of 147;149Sm isotopes have been extracted from particle-coincidences using the Oslo method. The nuclei of interest were populated via (p,d) reactions on pure 148;150Sm targets an d the reaction products were recorded by the Hyperion array. An upbend in the low-energy region of the gSF has been observed. The systematic analysis of the gSF for a range of Sm isotopes highlights the interplay between scissors mode and the upbend. Shell-model calculations show reasonable agreement with the experimental gSFs and confirm the correspondence between the upbend and scissors mode.
In this work, we present new data on the $^{89}$Y($gamma$,n) cross section studied with a quasi-monochromatic photon beam produced at the NewSUBARU synchrotron radiation facility in Japan contributing torwards resolving a long standing discrepancy be tween existing measurements of this cross section. Results for $gamma$-ray strength function below threshold obtained by applying the Oslo method to $^{89}$Y($p,pgamma$)$^{89}$Y coincidences combined with the $^{89}$Y($gamma$,n) data this providing experimental data for the $gamma$-ray strength function of $^{89}$Y for $gamma$ energies in the range of $approx 1.6$ Mev to $approx$ 20 MeV. A low-energy enhancement is seen for $gamma$-rays below $approx 2.5$ MeV. Shell-model calculations indicate that this feature is caused by strong, low-energy $M1$ transitions at high excitation energies. The nuclear level density and $gamma$-ray strength function have been extracted from $^{89}$Y($d,p gamma$)$^{90}$Y coincidences using the Oslo method. Using the ($gamma,n$) and ($d,pgamma$) data as experimental constraints, we have calculated the $^{89}$Y($n,gamma$)$^{90}$Y cross section with the TALYS reaction code. Our results have been compared with directly measured (n,$gamma$) cross sections and evaluations. The $N=50$ isotope $^{89}$Y is an important bottleneck in the s-process and the magnitude of the $^{89}$Y(n,$gamma)$ cross section is key to understanding how s-process stars produce heavy isotopes.
261 - Z. Korkulu , N. Ozkan , G. G. Kiss 2018
The aim of the present work is to measure the $^{121}$Sb($alpha,gamma$)$^{125}$I, $^{121}$Sb($alpha$,n)$^{124}$I, and $^{123}$Sb($alpha$,n)$^{126}$I reaction cross sections. The $alpha$-induced reactions on natural and enriched antimony targets were investigated using the activation technique. The ($alpha$,$gamma$) cross sections of $^{121}$Sb were measured and are reported for first time. To determine the cross section of the $^{121}$Sb($alpha$,$gamma$)$^{125}$I, $^{121}$Sb($alpha$,n)$^{124}$I, and $^{123}$Sb($alpha$,n)$^{126}$I reactions, the yields of $gamma$-rays following the $beta$-decay of the reaction products were measured. For the measurement of the lowest cross sections, the characteristic X-rays were counted with a LEPS (Low Energy Photon Spectrometer) detector. The cross section of the $^{121}$Sb($alpha$,$gamma$)$^{125}$I, $^{121}$Sb($alpha$,n)$^{124}$I and $^{123}$Sb($alpha$,n)$^{126}$I reactions were measured with high precision in an energy range between 9.74 MeV to 15.48 MeV, close to the astrophysically relevant energy window. The results are compared with the predictions of statistical model calculations. The ($alpha$,n) data show that the $alpha$ widths are predicted well for these reactions. The ($alpha$,$gamma$) results are overestimated by the calculations but this is due to the applied neutron- and $gamma$ widths. Relevant for the astrophysical reaction rate is the $alpha$ width used in the calculations.While for other reactions the $alpha$ widths seem to have been overestimated and their energy dependence was not described well in the measured energy range, this is not the case for the reactions studied here. The result is consistent with the proposal that additional reaction channels, such as Coulomb excitation, may have led to the discrepancies found in other reactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا