ﻻ يوجد ملخص باللغة العربية
This work develops application techniques for stochastic modelling of Active Galactic Nuclei (AGN) variability as a probe of accretion disk physics. Stochastic models, specifically Continuous Auto-Regressive Moving Average (CARMA) models, characterize lightcurves by estimating delay timescales that describe movements away from and toward equilibrium (mean flux) as well as an amplitude and frequency of intrinsic perturbations to the AGN flux. We begin this tutorial by reviewing discrete auto-regressive (AR) and moving-average (MA) processes, we bridge these components to their continuous analogs, and lastly we investigate the significance of timescales from direct stochastic modelling of a lightcurve projected in power spectrum (PSD) and structure function (SF) space. We determine that higher order CARMA models, for example the Damped Harmonic Oscillator (DHO or CARMA(2,1)) are more sensitive to deviations from a single-slope power-law description of AGN variability; unlike Damped Random Walks (DRW or CAR(1)) where the PSD slope is fixed, the DHO slope is not. Higher complexity stochastic models than the DRW capture additional covariance in data and output additional characteristic timescales that probe the driving mechanisms of variability.
The advent of new time domain surveys and the imminent increase in astronomical data expose the shortcomings in traditional time series analysis (such as power spectra analysis) in characterising the abundantly varied, complex and stochastic light cu
Here we present the evidence for periodicity of an optical emission detected in several AGN. Significant periodicity is found in light curves and radial velocity curves. We discuss possible mechanisms that could produce such periodic variability and
We used data from the QUEST-La Silla Active Galactic Nuclei (AGN) variability survey to construct light curves for 208,583 sources over $sim 70$ deg$^2$, with a a limiting magnitude $r sim 21$. Each light curve has at least 40 epochs and a length of
The Gaia DR2 sample of short-timescale variable candidates results from the investigation of the first 22 months of Gaia photometry for a subsample of sources at the Gaia faint end. For this exercise, we limited ourselves to the case of suspected rap
We present preliminary results on the variability properties of AGN above 20 keV in order to show the potential of the INTEGRAL IBIS/ISGRI and Swift/BAT instruments for hard X-ray timing analysis of AGN. The 15-50 keV light curves of 36 AGN observed