ﻻ يوجد ملخص باللغة العربية
We present a numerical study of the charge dynamical structure factor N(k,omega) of a one-dimensional (1D) ionic Hubbard model in the Mott insulator phase. We show that the low-energy spectrum of N(k,omega) is expressed in terms of the spin operators for the spin degrees of freedom. Numerical results of N(k,omega) for the spin degrees of freedom, obtained by the Lanczos diagonalization method, well reproduce the low-energy spectrum of N(k,omega) of the 1D ionic Hubbard model. In addition, we show that these spectral peaks probe the dispersion of the spin-singlet excitations of the system and are observed in the wide parameter region of the MI phase.
A detailed study of the one-dimensional ionic Hubbard model with interaction $U$ is presented. We focus on the band insulating (BI) phase and the spontaneously dimerized insulating (SDI) phase which appears on increasing $U$. By a recently introduced
We study the zero-temperature phase diagram of the half-filled one-dimensional ionic Hubbard model. This model is governed by the interplay of the on-site Coulomb repulsion and an alternating one-particle potential. Various many-body energy gaps, the
We study the real-time and real-space dynamics of charge in the one-dimensional Hubbard model in the limit of high temperatures. To this end, we prepare pure initial states with sharply peaked density profiles and calculate the time evolution of thes
We study the charge conductivity of the one-dimensional repulsive Hubbard model at finite temperature using the method of dynamical quantum typicality, focusing at half filling. This numerical approach allows us to obtain current autocorrelation func
We investigate the phases of the ionic Hubbard model in a two-dimensional square lattice using determinant quantum Monte Carlo (DQMC). At half-filling, when the interaction strength or the staggered potential dominate we find Mott and band insulators