ترغب بنشر مسار تعليمي؟ اضغط هنا

Volume pinching theorems for CAT(1) spaces

114   0   0.0 ( 0 )
 نشر من قبل Koichi Nagano
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Koichi Nagano




اسأل ChatGPT حول البحث

We examine volume pinching problems of CAT(1) spaces. We characterize a class of compact geodesically complete CAT(1) spaces of small specific volume. We prove a sphere theorem for compact CAT(1) homology manifolds of small volume. We also formulate a criterion of manifold recognition for homology manifolds on volume growths under an upper curvature bound.



قيم البحث

اقرأ أيضاً

We construct short retractions of a CAT(1) space to its small convex subsets. This construction provides an alternative geometric description of an analytic tool introduced by Wilfrid Kendall. Our construction uses a tractrix flow which can be defi ned as a gradient flow for a family of functions of certain type. In an appendix we prove a general existence result for gradient flows of time-dependent locally Lipschitz semiconcave functions, which is of independent interest.
We show that the class of CAT(0) spaces is closed under suitable conformal changes. In particular, any CAT(0) space admits a large variety of non-trivial deformations.
138 - Jian Ge 2020
In this note, we estimate the upper bound of volume of closed positively or nonnegatively curved Alexandrov space $X$ with strictly convex boundary. We also discuss the equality case. In particular, the Boundary Conjecture holds when the volume upper bound is achieved. Our theorem also can be applied to Riemannian manifolds with non-smooth boundary, which generalizes Heintze and Karchers classical volume comparison theorem. Our main tool is the gradient flow of semi-concave functions.
70 - Stephan Stadler 2018
We prove that a minimal disc in a CAT(0) space is a local embedding away from a finite set of branch points. On the way we establish several basic properties of minimal surfaces: monotonicity of area densities, density bounds, limit theorems and the existence of tangent maps. As an application, we prove Fary-Milnors theorem in the CAT(0) setting.
In this paper, we introduce a new notion for lower bounds of Ricci curvature on Alexandrov spaces, and extend Cheeger-Gromoll splitting theorem and Chengs maximal diameter theorem to Alexandrov spaces under this Ricci curvature condition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا