ﻻ يوجد ملخص باللغة العربية
In this contribution we determine the exact solution for the ground-state wave function of a two-particle correlated model atom with harmonic interactions. From that wave function, the nonidempotent one-particle reduced density matrix is deduced. Its diagonal gives the exact probability density, the basic variable of Density-Functional Theory. The one-matrix is directly decomposed, in a point-wise manner, in terms of natural orbitals and their occupation numbers, i.e., in terms of its eigenvalues and normalized eigenfunctions. The exact informations are used to fix three, approximate, independent-particle models. Next, a time-dependent external field of finite duration is added to the exact and approximate Hamiltonians and the resulting Cauchy problem is solved. The impact of the external field is investigated by calculating the energy shift generated by that time-dependent field. It is found that the nonperturbative energy shift reflects the sign of the driving field. The exact probability density and current are used, as inputs, to investigate the capability of a formally exact independent-particle modeling in time-dependent DFT as well. The results for the observable energy shift are analyzed by using realistic estimations for the parameters of the two-particle target and the external field. A comparison with the experimental prediction on the sign-dependent energy loss of swift protons and antiprotons in a gaseous He target is made.
Circuit quantization links a physical circuit to its corresponding quantum Hamiltonian. The standard quantization procedure generally assumes any external magnetic flux to be static. Time dependence naturally arises, however, when flux is modulated o
The dynamics of a probe D7-brane in an asymptotically AdS-Vaidya background has been investigated in the presence of an external magnetic field. Holographically, this is dual to the dynamical meson melting in the N = 2 super Yang-Milles theory. If th
We investigate the system constituted by a polarizable atom near a nanosphere under the influence of an external electrostatic field, showing that the attractive dispersive force between them can be overcome by the electrostatic interaction. Therefor
Integrals of motion and statistical properties of quantized electromagnetic field (e.-m. field) in time-dependent linear dielectric and conductive media are considered, using Choi-Yeon quantization, based on Caldirola-Kanai type Hamiltonian. Eigensta
We report measurements of the time-dependent phases of the leak and retrieved pulses obtained in EIT storage experiments with metastable helium vapor at room temperature. In particular, we investigate the influence of the optical detuning at two-phot