ﻻ يوجد ملخص باللغة العربية
In order to investigate the electronic properties of the semiconducting van der Waals ferromagnet Cr$_2$Ge$_2$Te$_6$ (CGT), where ferromagnetic layers are bonded through van der Waals forces, we have performed angle-resolved photoemission spectroscopy (ARPES) measurements and density-functional-theory (DFT+U) calculations. The valence-band maximum at the {Gamma} point is located $sim$ 0.2 eV below the Fermi level, consistent with the semiconducting property of CGT. Comparison of the experimental density of states with the DFT calculation has suggested that Coulomb interaction between the Cr 3d electrons U$_{rm eff}$ $sim$ 1.1 eV. The DFT+U calculation indicates that magnetic coupling between Cr atoms within the layer is ferromagnetic if Coulomb U $_{rm eff}$ is smaller than 3.0 eV and that the inter-layer coupling is ferromagnetic below U$_{rm eff}$ $sim$ 1.0 eV. We therefore conclude that, for U$_{rm eff}$ deduced by the experiment, the intra-layer Cr-Cr coupling is ferromagnetic and the inter-layer coupling is near the boundary between ferromagnetic and antiferromagnetic, which means experimentally deduced U$_{rm eff}$ is consistent with theoretical ferromagnetic condition.
The van der Waals ferromagnet Cr$_2$Ge$_2$Te$_6$ (CGT) has a two-dimensional crystal structure where each layer is stacked through van der Waals force. We have investigated the nature of the ferromagnetism and the weak perpendicular magnetic anisotro
We report the results of the pressure-dependent measurements of the static magnetization and of the ferromagnetic resonance (FMR) of Cr$_2$Ge$_2$Te$_6$ to address the properties of the ferromagnetic phase of this quasi-two-dimensional van der Waals m
We study the magnetisation dynamics of a bulk single crystal Cr$_2$Ge$_2$Te$_6$ (CGT), by means of broadband ferromagnetic resonance (FMR), for temperatures from 60 K down to 2 K. We determine the Kittel relations of the fundamental FMR mode as a fun
Anomalous Nernst effect, a result of charge current driven by temperature gradient, provides a probe of the topological nature of materials due to its sensitivity to the Berry curvature near the Fermi level. Fe3GeTe2, one important member of the rece
Combining robust magnetism, strong spin-orbit coupling and unique thickness-dependent properties of van der Waals crystals could enable new spintronics applications. Here, using density functional theory, we propose the (MnSb$_2$Te$_4$)$cdot$(Sb$_2$T