ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Comment Generation by Leveraging User-Generated Data

78   0   0.0 ( 0 )
 نشر من قبل Zhaojiang Lin
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Existing models on open-domain comment generation are difficult to train, and they produce repetitive and uninteresting responses. The problem is due to multiple and contradictory responses from a single article, and by the rigidity of retrieval methods. To solve this problem, we propose a combined approach to retrieval and generation methods. We propose an attentive scorer to retrieve informative and relevant comments by leveraging user-generated data. Then, we use such comments, together with the article, as input for a sequence-to-sequence model with copy mechanism. We show the robustness of our model and how it can alleviate the aforementioned issue by using a large scale comment generation dataset. The result shows that the proposed generative model significantly outperforms strong baseline such as Seq2Seq with attention and Information Retrieval models by around 27 and 30 BLEU-1 points respectively.



قيم البحث

اقرأ أيضاً

Over recent years a lot of research papers and studies have been published on the development of effective approaches that benefit from a large amount of user-generated content and build intelligent predictive models on top of them. This research app lies machine learning-based approaches to tackle the hurdles that come with Persian user-generated textual content. Unfortunately, there is still inadequate research in exploiting machine learning approaches to classify/cluster Persian text. Further, analyzing Persian text suffers from a lack of resources; specifically from datasets and text manipulation tools. Since the syntax and semantics of the Persian language is different from English and other languages, the available resources from these languages are not instantly usable for Persian. In addition, recognition of nouns and pronouns, parts of speech tagging, finding words boundary, stemming or character manipulations for Persian language are still unsolved issues that require further studying. Therefore, efforts have been made in this research to address some of the challenges. This presented approach uses a machine-translated datasets to conduct sentiment analysis for the Persian language. Finally, the dataset has been rehearsed with different classifiers and feature engineering approaches. The results of the experiments have shown promising state-of-the-art performance in contrast to the previous efforts; the best classifier was Support Vector Machines which achieved a precision of 91.22%, recall of 91.71%, and F1 score of 91.46%.
Unsupervised pre-training of large neural models has recently revolutionized Natural Language Processing. By warm-starting from the publicly released checkpoints, NLP practitioners have pushed the state-of-the-art on multiple benchmarks while saving significant amounts of compute time. So far the focus has been mainly on the Natural Language Understanding tasks. In this paper, we demonstrate the efficacy of pre-trained checkpoints for Sequence Generation. We developed a Transformer-based sequence-to-sequence model that is compatible with publicly available pre-trained BERT, GPT-2 and RoBERTa checkpoints and conducted an extensive empirical study on the utility of initializing our model, both encoder and decoder, with these checkpoints. Our models result in new state-of-the-art results on Machine Translation, Text Summarization, Sentence Splitting, and Sentence Fusion.
Data augmentation is proven to be effective in many NLU tasks, especially for those suffering from data scarcity. In this paper, we present a powerful and easy to deploy text augmentation framework, Data Boost, which augments data through reinforceme nt learning guided conditional generation. We evaluate Data Boost on three diverse text classification tasks under five different classifier architectures. The result shows that Data Boost can boost the performance of classifiers especially in low-resource data scenarios. For instance, Data Boost improves F1 for the three tasks by 8.7% on average when given only 10% of the whole data for training. We also compare Data Boost with six prior text augmentation methods. Through human evaluations (N=178), we confirm that Data Boost augmentation has comparable quality as the original data with respect to readability and class consistency.
We introduce Procgen Benchmark, a suite of 16 procedurally generated game-like environments designed to benchmark both sample efficiency and generalization in reinforcement learning. We believe that the community will benefit from increased access to high quality training environments, and we provide detailed experimental protocols for using this benchmark. We empirically demonstrate that diverse environment distributions are essential to adequately train and evaluate RL agents, thereby motivating the extensive use of procedural content generation. We then use this benchmark to investigate the effects of scaling model size, finding that larger models significantly improve both sample efficiency and generalization.
A wide variety of NLP applications, such as machine translation, summarization, and dialog, involve text generation. One major challenge for these applications is how to evaluate whether such generated texts are actually fluent, accurate, or effectiv e. In this work, we conceptualize the evaluation of generated text as a text generation problem, modeled using pre-trained sequence-to-sequence models. The general idea is that models trained to convert the generated text to/from a reference output or the source text will achieve higher scores when the generated text is better. We operationalize this idea using BART, an encoder-decoder based pre-trained model, and propose a metric BARTScore with a number of variants that can be flexibly applied in an unsupervised fashion to evaluation of text from different perspectives (e.g. informativeness, fluency, or factuality). BARTScore is conceptually simple and empirically effective. It can outperform existing top-scoring metrics in 16 of 22 test settings, covering evaluation of 16 datasets (e.g., machine translation, text summarization) and 7 different perspectives (e.g., informativeness, factuality). Code to calculate BARTScore is available at https://github.com/neulab/BARTScore, and we have released an interactive leaderboard for meta-evaluation at http://explainaboard.nlpedia.ai/leaderboard/task-meval/ on the ExplainaBoard platform, which allows us to interactively understand the strengths, weaknesses, and complementarity of each metric.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا