ﻻ يوجد ملخص باللغة العربية
A semiconductor tracker for muon scattering tomography is presented. The tracker contains silicon strip sensors with an $80,mu$m pitch, precision mechanics and integrated cooling. The electronic readout of the sensors is performed by a scalable, inexpensive, flexible, FPGA-based system, which is demonstrated to achieve an event rate of $30,$kHz. The tracker performance is compared with a Geant4 simulation. A scattering angle resolution compatible with $1.5,$mrad at the $4,$GeV average cosmic ray muon energy is demonstrated. Images of plastic, iron and lead samples are obtained using an Angle Statistics Reconstruction algorithm. The images demonstrate good contrast between low and high atomic number materials.
A feasibility demonstration of three-dimensional (3D) muon tomography was performed for infrastructure equivalent targets using the proposed portable muography detector. For the target, we used two sets of lead blocks placed at different heights. The
Cosmic ray muon has strong penetrating power and no ionizing radiation hazards, which make cosmic ray muon an ideal probe to detect the special nuclear materials (SNM). However, the existing muon tomography experiments have the disadvantages of long
Cosmic ray muon tomography is a novel technology to detect high-Z material. A prototype of TUMUTY with 73.6 cm x 73.6 cm large scale position sensitive MRPC detectors has been developed and is introduced in this paper. Three test kits have been teste
In order to test the performance of detector/prototype in environment of laboratory, we design and build a larger area ($90times52$ $cm^2$) test platform of cosmic ray based on well-designed Multi-gap Resistive Plate Chamber (MRPC) with an excellent
The motivation for a cosmic muon veto (CMV) detector is to explore the possibility of locating the proposed large Iron Calorimeter (ICAL) detector at the India based Neutrino Observatory (INO) at a shallow depth. An initial effort in that direction,