ﻻ يوجد ملخص باللغة العربية
Forming (hybrid) AC/DC microgrids (MGs) has become a promising manner for the interconnection of various kinds of distributed generators that are inherently AC or DC electric sources. This paper addresses the distributed asynchronous power control problem of hybrid microgrids, considering imperfect communication due to non-identical sampling rates and communication delays. To this end, we first formulate the optimal power control problem of MGs and devise a synchronous algorithm. Then, we analyze the impact of asynchrony on optimal power control and propose an asynchronous iteration algorithm based on the synchronous version. By introducing a random clock at each iteration, different types of asynchrony are fitted into a unified framework, where the asynchronous algorithm is converted into a fixed-point problem based on the operator splitting method, leading to a convergence proof. We further provide an upper bound estimation of the time delay in the communication. Moreover, the real-time implementation of the proposed algorithm in both AC and DC MGs is introduced. By taking the power system as a solver, the controller is simplified by reducing one order and the power loss can be considered. Finally, a benchmark MG is utilized to verify the effectiveness and advantages of the proposed algorithm.
Motivated by the fact that the location(s) and structural properties of the pinning node(s) affect the algebraic connectivity of a network with respect to the reference value and thereby, its dynamic performance, this paper studies the application of
Recently we studied communication delay in distributed control of untimed discrete-event systems based on supervisor localization. We proposed a property called delay-robustness: the overall system behavior controlled by distributed controllers with
This paper considers the distributed sampled-data control problem of a group of mobile robots connected via distance-induced proximity networks. A dwell time is assumed in order to avoid chattering in the neighbor relations that may be caused by abru
Optimal power flow (OPF) is an important technique for power systems to achieve optimal operation while satisfying multiple constraints. The traditional OPF are mostly centralized methods which are executed in the centralized control center. This pap
In this work, a dynamic system is controlled by multiple sensor-actuator agents, each of them commanding and observing parts of the systems input and output. The different agents sporadically exchange data with each other via a common bus network acc