ﻻ يوجد ملخص باللغة العربية
The Nilsson model is a simple microscopic model which has been extensively used over the years for the interpretation of a bulk of experimental results. The single particle orbitals in this model are labeled by quantum numbers which are good in the limit of large nuclear deformations. However, it is generally admitted that these quantum numbers remain good even at moderate deformations. We show that this fact is due to the existence of an underlying approximate symmetry, called the proxy-SU(3) symmetry. The implications of proxy-SU(3) on various aspects of nuclear structure will be discussed.
In reactions the wave packets of the emerging products typically are not eigenstates of particle number operators or any other conserved quantities and their properties are entangled. I describe a particle projection technique in parts of space, whic
It is argued that there exist natural shell model spaces optimally adapted to the operation of two variants of Elliott SU3 symmetry that provide accurate predictions of quadrupole moments of deformed states. A selfconsistent Nilsson-like calculation
A numerical study of stably stratified flows past spheres at Reynolds numbers $Re=200$ and $Re=300$ is reported. In these flow regimes, a neutrally stratified laminar flow induces distinctly different near-wake features. However, the flow behaviour c
In the context of string theory we argue that higher dimensional Dp-branes unwind and evaporate so that we are left with D3-branes embedded in a (9+1)-dimensional bulk. One of these D3-branes plays the role of our Universe. Within this picture, the e
The polarization of $Lambda$ hyperons from relativistic flow vorticity is studied in peripheral heavy ion reactions at FAIR and NICA energies, just above the threshold of the transition to the Quark-Gluon Plasma. Previous calculations at higher energ