ترغب بنشر مسار تعليمي؟ اضغط هنا

Why do Nilsson quantum numbers remain good at moderate deformations?

174   0   0.0 ( 0 )
 نشر من قبل Dennis Bonatsos
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Nilsson model is a simple microscopic model which has been extensively used over the years for the interpretation of a bulk of experimental results. The single particle orbitals in this model are labeled by quantum numbers which are good in the limit of large nuclear deformations. However, it is generally admitted that these quantum numbers remain good even at moderate deformations. We show that this fact is due to the existence of an underlying approximate symmetry, called the proxy-SU(3) symmetry. The implications of proxy-SU(3) on various aspects of nuclear structure will be discussed.



قيم البحث

اقرأ أيضاً

703 - Aurel Bulgac 2019
In reactions the wave packets of the emerging products typically are not eigenstates of particle number operators or any other conserved quantities and their properties are entangled. I describe a particle projection technique in parts of space, whic h eschews the need to evaluate Pfaffians in the case of overlap of generalized Slater determinants or Hartree-Fock-Bogoliubov type of vacua. The extension of these formulas for calculating either angular momentum or particle projected energy distributions of the reaction fragments are presented as well. The generalization to simultaneous particle and angular momentum projection of various reaction fragment observables is straightforward.
It is argued that there exist natural shell model spaces optimally adapted to the operation of two variants of Elliott SU3 symmetry that provide accurate predictions of quadrupole moments of deformed states. A selfconsistent Nilsson-like calculation describes the competition between the realistic quadrupole force and the central field, indicating a {em remarkable stability of the quadruplole moments}---which remain close to their quasi and pseudo SU3 values---as the single particle splittings increase. A detailed study of the $N=Z$ even nuclei from $^{56}$Ni to $^{96}$Cd reveals that the region of prolate deformation is bounded by a pair of transitional nuclei $^{72}$Kr and $^{84}$Mo in which prolate ground state bands are predicted to dominate, though coexisting with oblate ones,
A numerical study of stably stratified flows past spheres at Reynolds numbers $Re=200$ and $Re=300$ is reported. In these flow regimes, a neutrally stratified laminar flow induces distinctly different near-wake features. However, the flow behaviour c hanges significantly as the stratification increases and suppresses the scale of vertical displacements of fluid parcels. Computations for a range of Froude numbers $Frin [0.1,infty]$ show that as Froude number decreases, the flow patterns for both Reynolds numbers become similar. The representative simulations of the lee-wave instability at $Fr=0.625$ and the two-dimensional vortex shedding at $Fr=0.25$ regimes are illustrated for flows past single and tandem spheres, thereby providing further insight into the dynamics of stratified flows past bluff bodies. In particular, the reported study examines the relative influence of viscosity and stratification on the dividing streamline elevation, wake structure and flow separation. The solutions of the Navier-Stokes equations in the incompressible Boussinesq limit are obtained on unstructured meshes suitable for simulations involving multiple bodies. Computations are accomplished using the finite volume, non-oscillatory forward-in-time (NFT) Multidimensional Positive Definite Transport Algorithm (MPDATA) based solver. The impact and validity of the numerical approximations, especially for the cases exhibiting strong stratification, are also discussed. Qualitative and quantitative comparisons with available laboratory experiments and prior numerical studies confirm the validity of the numerical approach.
In the context of string theory we argue that higher dimensional Dp-branes unwind and evaporate so that we are left with D3-branes embedded in a (9+1)-dimensional bulk. One of these D3-branes plays the role of our Universe. Within this picture, the e vaporation of the higher dimensional Dp-branes provides the entropy of our Universe.
The polarization of $Lambda$ hyperons from relativistic flow vorticity is studied in peripheral heavy ion reactions at FAIR and NICA energies, just above the threshold of the transition to the Quark-Gluon Plasma. Previous calculations at higher energ ies with larger initial angular momentum, predicted significant $Lambda$ polarization based on the classical vorticity term in the polarization, while relativistic modifications decreased the polarization and changed its structure in the momentum space. At the lower energies studied here, we see the same effect namely that the relativistic modifications decrease the polarization arising from the initial shear flow vorticity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا