ﻻ يوجد ملخص باللغة العربية
The temperature dependence of the solid-liquid interfacial free energy, {gamma}, is investigated for Al and Ni at the undercooled temperature regime based on a recently developed persistent-embryo method. The atomistic description of the nucleus shape is obtained from molecular dynamics simulations. The computed {gamma} shows a linear dependence on the temperature. The values of {gamma} extrapolated to the melting temperature agree well with previous data obtained by the capillary fluctuation method. Using the temperature dependence of {gamma}, we estimate the nucleation free energy barrier in a wide temperature range from the classical nucleation theory. The obtained data agree very well with the results from the brute-force molecular dynamics simulations.
The properties of the interface between solid and melt are key to solidification and melting, as the interfacial free energy introduces a kinetic barrier to phase transitions. This makes solidification happen below the melting temperature, in out-of-
Many atomic liquids can form transient covalent bonds reminiscent of those in the corresponding solid states. These directional interactions dictate many important properties of the liquid state, necessitating a quantitative, atomic-scale understandi
Room Temperature Ionic Liquids (RTILs) have attracted much of the attention of the scientific community in the past decade due the their novel and highly customizable properties. Nonetheless their high viscosities pose serious limitations to the use
The ultraviolet (UV) photodissociation of amorphous water ice at different ice temperatures is investigated using molecular dynamics (MD) simulations and analytical potentials. Previous MD calculations of UV photodissociation of amorphous and crystal
Laser ablation of Al-Ni alloys and Al films on Ni substrates has been studied by molecular dynamics simulations (MD). The MD method was combined with a two-temperature model to describe the interaction between the laser beam, the electrons and the at