ﻻ يوجد ملخص باللغة العربية
In this work we present a new hybrid method to simulate the thermal effects of the reionization in cosmological hydrodynamical simulations. The method improves upon the standard approach used in simulations of the intergalactic medium (IGM) and galaxy formation without a significant increase of the computational cost allowing for efficient exploration of the parameter space. The method uses a small set of phenomenological input parameters and combines a semi-numerical reionization model to solve for the topology of reionization and an approximate model of how reionization heats the IGM, with the massively parallel texttt{Nyx} hydrodynamics code, specifically designed to solve for the structure of diffuse IGM gas. We have produced several large-scale high resolution cosmological hydrodynamical simulations ($2048^3$, $L_{rm box} = 40$ Mpc/h) with different instantaneous and inhomogeneous HI reionization models that use this new methodology. We study the IGM thermal properties of these models and find that large scale temperature fluctuations extend well beyond the end of reionization. Analyzing the 1D flux power spectrum of these models, we find up to $sim 50%$ differences in the large scale properties (low modes, $klesssim0.01$ s/km) of the post-reionization power spectrum due to the thermal fluctuations. We show that these differences could allow one to distinguish between different reionization scenarios already with existing Ly$alpha$ forest measurements. Finally, we explore the differences in the small-scale cutoff of the power spectrum and we find that, for the same heat input, models show very good agreement provided that the reionization redshift of the instantaneous reionization model happens at the midpoint of the inhomogeneous model.
We study the properties of two bars formed in fully cosmological hydrodynamical simulations of the formation of Milky Way-mass galaxies. In one case, the bar formed in a system with disc, bulge and halo components and is relatively strong and long, a
We have explored the evolution of gas distributions from cosmological simulations carried out using the RAMSES adaptive mesh refinement (AMR) code, to explore the effects of resolution on cosmological hydrodynamical simulations. It is vital to unders
We present a study of hydrodynamic drag forces in smoothed particle simulations. In particular, the deceleration of a resolution-limited cold clump of gas moving through a hot medium is examined. It is found that the drag for subsonic velocities exce
We examine the chemical properties of 5 cosmological hydrodynamical simulations of an M33-like disc galaxy which have been shown to be consistent with the morphological characteristics and bulk scaling relations expected of late-type spirals. These s
We explored the role of X-ray binaries composed by a black hole and a massive stellar companion (BHXs) as sources of kinetic feedback by using hydrodynamical cosmological simulations. Following previous results, our BHX model selects low metal-poor s