ﻻ يوجد ملخص باللغة العربية
Spectra of magnetoplasma excitations have been investigated in a two-dimensional electron systems in AlAs quantum wells (QWs) of different widths. The magnetoplasma spectrum have been found to change profoundly when the quantum well width became thinner than $5.5$~nm, indicating a drastic change in the conduction electron energy spectrum. The transformation can be interpreted in terms of transition from the in-plane strongly anisotropic $X_x - X_y$ valley occupation to the out-of-plane isotropic $X_z$ valley in the QW plane. Strong enhancement of the cyclotron effective mass over the band value in narrow AlAs QWs is reported.
Terahertz photoconductivity of $100~mu$m and $20~mu$m Hall bars fabricated from narrow AlAs quantum wells (QWs) of different widths is investigated in this paper. The photoresponse is dominated by collective magnetoplasmon excitations within the body
We report measurements of the spin susceptibility in dilute two-dimensional electrons confined to a 45$AA$ wide AlAs quantum well. The electrons in this well occupy an out-of-plane conduction-band valley, rendering a system similar to two-dimensional
Quantum wells (QWs) based on mercury telluride (HgTe) thin films provide a large scale of unusual physical properties starting from an insulator via a two-dimensional Dirac semimetal to a three-dimensional topological insulator. These properties resu
Thanks to their multi-valley, anisotropic, energy band structure, two-dimensional electron systems (2DESs) in modulation-doped AlAs quantum wells (QWs) provide a unique platform to investigate electron interaction physics and ballistic transport. Ind
We demonstrate tuning of two-dimensional (2D) plasmon spectrum in modulation-doped AlAs quantum wells via the application of in-plane uniaxial strain. We show that dramatic change in the plasma spectrum is caused by strain-induced redistribution of c