ﻻ يوجد ملخص باللغة العربية
We present an experimental and numerical study of missing-level statistics of chaotic three-dimensional microwave cavities. The nearest-neighbor spacing distribution, the spectral rigidity, and the power spectrum of level fluctuations were investigated. We show that the theoretical approach to a problem of incomplete spectra does not work well when the incompleteness of the spectra is caused by unresolved resonances. In such a case the fraction of missing levels can be evaluated by calculations based on random matrix theory.
We present an experimental study of missing level statistics of three-dimensional chaotic microwave cavities. The investigation is reinforced by the power spectrum of level fluctuations analysis which also takes into account the missing levels. On th
We compute the Lyapunov spectrum and the Kolmogorov-Sinai entropy for a moving particle placed in a dilute, random array of hard disk or hard sphere scatterers - i.e. the dilute Lorentz gas model. This is carried out in two ways: First we use simple
We have measured resonance spectra in a superconducting microwave cavity with the shape of a three-dimensional generalized Bunimovich stadium billiard and analyzed their spectral fluctuation properties. The experimental length spectrum exhibits contr
A realisation of a periodically driven microwave system is presented. The principal element of the scheme is a variable capacity, i.e. a varicap, introduced as an element of the resonant circuit. Sideband structures corresponding to different driving
Transport and mixing of scalar quantities in fluid flows is ubiquitous in industry and Nature. Turbulent flows promote efficient transport and mixing by their inherent randomness. Laminar flows lack such a natural mixing mechanism and efficient trans