ﻻ يوجد ملخص باللغة العربية
The robust adaptive beamforming design problem based on estimation of the signal of interest steering vector is considered in the paper. In this case, the optimal beamformer is obtained by computing the sample matrix inverse and an optimal estimate of the signal of interest steering vector. The common criteria to find the best estimate of the steering vector are the beamformer output SINR and output power, while the constraints assume as little as possible prior inaccurate knowledge about the signal of interest, the propagation media, and the antenna array. Herein, a new beamformer output power maximization problem is formulated and solved subject to a double-sided norm perturbation constraint, a similarity constraint, and a quadratic constraint that guarantees that the direction-of-arrival (DOA) of the signal of interest is away from the DOA region of all linear combinations of the interference steering vectors. In the new robust design, the prior information required consists of some allowable error norm bounds, the approximate knowledge of the antenna array geometry, and the angular sector of the signal of interest. It turns out that the array output power maximization problem is a non-convex QCQP problem with inhomogeneous constraints. However, we show that the problem is still solvable, and develop efficient algorithms for finding globally optimal estimate of the signal of interest steering vector. The results are generalized to the case where an ellipsoidal constraint is considered, and sufficient conditions for the global optimality are derived. In addition, a new quadratic constraint on the actual signal steering vector is proposed in order to improve the array performance. To validate our results, simulation examples are presented, and they demonstrate the improved performance of the new robust beamformers in terms of the output SINR as well as the output power.
This paper considers the regularized estimation of covariance matrices (CM) of high-dimensional (compound) Gaussian data for minimum variance distortionless response (MVDR) beamforming. Linear shrinkage is applied to improve the accuracy and conditio
Blocking is often used to reduce known variability in designed experiments by collecting together homogeneous experimental units. A common modelling assumption for such experiments is that responses from units within a block are dependent. Accounting
Algorithms which compute locally optimal continuous designs often rely on a finite design space or on repeatedly solving a complex non-linear program. Both methods require extensive evaluations of the Jacobian Df of the underlying model. These evalua
The problem of radar detection in compound Gaussian clutter when a radar signature is not completely known has not been considered yet and is addressed in this paper. We proposed a robust technique to detect, based on the generalized likelihood ratio
Channel estimation in wideband millimeter-wave (mmWave) systems is very challenging due to the beam squint effect. To solve the problem, we propose a learnable iterative shrinkage thresholding algorithm-based channel estimator (LISTA-CE) based on dee