ﻻ يوجد ملخص باللغة العربية
An exact solution of nuclear spherical mean-field plus orbit-dependent non-separable pairing model with two non-degenerate j-orbits is presented. The extended one-variable Heine-Stieltjes polynomials associated to the Bethe ansatz equations of the solution are determined, of which the sets of the zeros give the solution of the model, and can be determined relatively easily. A comparison of the solution to that of the standard pairing interaction with constant interaction strength among pairs in any orbit is made. It is shown that the overlaps of eigenstates of the model with those of the standard pairing model are always large, especially for the ground and the first excited state. However, the quantum phase crossover in the non-separable pairing model cannot be accounted for by the standard pairing interaction.
We consider the spherical model on a spider-web graph. This graph is effectively infinite-dimensional, similar to the Bethe lattice, but has loops. We show that these lead to non-trivial corrections to the simple mean-field behavior. We first determi
A quantum Monte-Carlo is proposed to describe fusion/fission processes when fluctuation and dissipation, with memory effects, are important. The new theory is illustrated for systems with inverted harmonic potentials coupled to a heat-bath.
The collective and purely relaxational dynamics of quantum many-body systems after a quench at temperature $T=0$, from a disordered state to various phases is studied through the exact solution of the quantum Langevin equation of the spherical and th
An algebraic method is devised to look for non-local symmetries of the pseudopotential type of nonlinear field equations. The method is based on the use of an infinite-dimensional subalgebra of the prolongation algebra $L$ associated with the equatio
We perform systematic calculations of pairing gaps in semi-magic nuclei across the nuclear chart using the Energy Density Functional method and a {it non-empirical} pairing functional derived, without further approximation, at lowest order in the two