ﻻ يوجد ملخص باللغة العربية
High-energy collider physics in the next decade will be dominated by the LHC, whose high-luminosity incarnation will take Higgs measurements and new particle searches to the next level. Several high-energy e+ e- colliders are being proposed, including the ILC (the most mature), CLIC (the highest energy) and the large circular colliders FCC-ee and CEPC (the highest luminosities for ZH production, Z pole and W+ W- threshold studies), and the latter have synergies with the 100-TeV pp collider options for the same tunnels (FCC-hh and SppC). The Higgs, the Standard Model effective field theory, dark matter and supersymmetry will be used to illustrate some of these colliders capabilities. Large circular colliders appear the most versatile, able to explore the 10-TeV scale both directly in pp collisions and indirectly via precision measurements in e+ e- collisions.
This review presents flavour related issues in the production and decays of heavy states at LHC, both from the experimental side and from the theoretical side. We review top quark physics and discuss flavour aspects of several extensions of the Stand
We outline several directions for future investigations of the three-dimensional structure of nucleon, including multiparton correlations, color transparency, and branching processes at hadron colliders and at hadron factories. We also find evidence
The Future Circular Collider (FCC) Study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron-hadron collision mode, seven times larger than the nominal LHC energies.
We review the collider phenomenology of neutrino physics and the synergetic aspects at energy, intensity and cosmic frontiers to test the new physics behind the neutrino mass mechanism. In particular, we focus on seesaw models within the minimal setu
New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by i