ﻻ يوجد ملخص باللغة العربية
TRAPPIST-1 (Gillon et al. 2017) is an extremely compact planetary system: seven earth-sized planets orbit at distances lower than 0.07 AU around one of the smallest M-dwarf known in the close neighborhood of the Sun (with a mass of less than 0.09 $M_odot$). With 3 planets within the classical habitable zone, this system represents an interesting observational target for future instruments such as the JWST (e.g. Barstow & Irwin 2016). As the planets are close-in, tidal interactions play a crucial role in the evolution of the system by controlling both orbital configurations and rotational states of the planets. For the closest planets, the associated tidal dissipation could have an influence on their internal evolution and potentially on their climate and habitability Turbet et al. (2018). Following (Tobie et al. 2005), we build multilayer models of the internal structure of the TRAPPIST-1 planets accounting for the mass and radius of Grimm et al. (2018), then we compute the tidal response and estimate the tidal heat flux of each planet as well as the profile of tidal heating with depth. Finally, we compare our results to the homogeneous model of Efroimsky (2012) and assess the impact heating rate on the thermal state of each layer of the planet.
We perform numerical simulations of the TRAPPIST-1 system of seven exoplanets orbiting a nearby M dwarf, starting with a previously suggested stable configuration. The long-term stability of this configuration is confirmed, but the motion of planets
We study the dynamical evolution of the TRAPPIST-1 system under the influence of orbital circularization through tidal interaction with the central star. We find that systems with parameters close to the observed one evolve into a state where consecu
The newly detected TRAPPIST-1 system, with seven low-mass, roughly Earth-sized planets transiting a nearby ultra-cool dwarf, is one of the most important exoplanet discoveries to date. The short baseline of the available discovery observations, howev
With the discovery of TRAPPIST-1 and its seven planets within 0.06 au, the correct treatment of tidal interactions is becoming necessary. The eccentricity, rotation, and obliquity of the planets of TRAPPIST-1 are indeed the result of tidal evolution
After publication of our initial mass-radius-composition models for the TRAPPIST-1 system in Unterborn et al. (2018), the planet masses were updated in Grimm et al. (2018). We had originally adopted the data set of Wang et al., 2017 who reported diff