ترغب بنشر مسار تعليمي؟ اضغط هنا

A Faster-Than Relation for Semi-Markov Decision Processes

61   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

When modeling concurrent or cyber-physical systems, non-functional requirements such as time are important to consider. In order to improve the timing aspects of a model, it is necessary to have some notion of what it means for a process to be faster than another, which can guide the stepwise refinement of the model. To this end we study a faster-than relation for semi-Markov decision processes and compare it to standard notions for relating systems. We consider the compositional aspects of this relation, and show that the faster-than relation is not a precongruence with respect to parallel composition, hence giving rise to so-called parallel timing anomalies. We take the first steps toward understanding this problem by identifying decidable conditions sufficient to avoid parallel timing anomalies in the absence of non-determinism.



قيم البحث

اقرأ أيضاً

We consider Markov decision processes (MDP) as generators of sequences of probability distributions over states. A probability distribution is p-synchronizing if the probability mass is at least p in a single state, or in a given set of states. We co nsider four temporal synchronizing modes: a sequence of probability distributions is always p-synchronizing, eventually p-synchronizing, weakly p-synchronizing, or strongly p-synchronizing if, respectively, all, some, infinitely many, or all but finitely many distributions in the sequence are p-synchronizing. For each synchronizing mode, an MDP can be (i) sure winning if there is a strategy that produces a 1-synchronizing sequence; (ii) almost-sure winning if there is a strategy that produces a sequence that is, for all epsilon > 0, a (1-epsilon)-synchronizing sequence; (iii) limit-sure winning if for all epsilon > 0, there is a strategy that produces a (1-epsilon)-synchronizing sequence. We provide fundamental results on the expressiveness, decidability, and complexity of synchronizing properties for MDPs. For each synchronizing mode, we consider the problem of deciding whether an MDP is sure, almost-sure, or limit-sure winning, and we establish matching upper and lower complexity bounds of the problems: for all winning modes, we show that the problems are PSPACE-complete for eventually and weakly synchronizing, and PTIME-complete for always and strongly synchronizing. We establish the memory requirement for winning strategies, and we show that all winning modes coincide for always synchronizing, and that the almost-sure and limit-sure winning modes coincide for weakly and strongly synchronizing.
Semi-Markov processes are Markovian processes in which the firing time of the transitions is modelled by probabilistic distributions over positive reals interpreted as the probability of firing a transition at a certain moment in time. In this paper we consider the trace-based semantics of semi-Markov processes, and investigate the question of how to compare two semi-Markov processes with respect to their time-dependent behaviour. To this end, we introduce the relation of being faster than between processes and study its algorithmic complexity. Through a connection to probabilistic automata we obtain hardness results showing in particular that this relation is undecidable. However, we present an additive approximation algorithm for a time-bounded variant of the faster-than problem over semi-Markov processes with slow residence-time functions, and a coNP algorithm for the exact faster-than problem over unambiguous semi-Markov processes.
We propose a simple technique for verifying probabilistic models whose transition probabilities are parametric. The key is to replace parametric transitions by nondeterministic choices of extremal values. Analysing the resulting parameter-free model using off-the-shelf means yields (refinable) lower and upper bounds on probabilities of regions in the parameter space. The technique outperforms the existing analysis of parametric Markov chains by several orders of magnitude regarding both run-time and scalability. Its beauty is its applicability to various probabilistic models. It in particular provides the first sound and feasible method for performing parameter synthesis of Markov decision processes.
140 - Laurent Doyen 2011
We introduce synchronizing objectives for Markov decision processes (MDP). Intuitively, a synchronizing objective requires that eventually, at every step there is a state which concentrates almost all the probability mass. In particular, it implies t hat the probabilistic system behaves in the long run like a deterministic system: eventually, the current state of the MDP can be identified with almost certainty. We study the problem of deciding the existence of a strategy to enforce a synchronizing objective in MDPs. We show that the problem is decidable for general strategies, as well as for blind strategies where the player cannot observe the current state of the MDP. We also show that pure strategies are sufficient, but memory may be necessary.
We investigate the problem of monitoring partially observable systems with nondeterministic and probabilistic dynamics. In such systems, every state may be associated with a risk, e.g., the probability of an imminent crash. During runtime, we obtain partial information about the system state in form of observations. The monitor uses this information to estimate the risk of the (unobservable) current system state. Our results are threefold. First, we show that extensions of state estimation approaches do not scale due the combination of nondeterminism and probabilities. While convex hull algorithms improve the practical runtime, they do not prevent an exponential memory blowup. Second, we present a tractable algorithm based on model checking conditional reachability probabilities. Third, we provide prototypical implementations and manifest the applicability of our algorithms to a range of benchmarks. The results highlight the possibilities and boundaries of our novel algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا