ﻻ يوجد ملخص باللغة العربية
Magnetic resonance plays an important role in todays science, engineering, and medical diagnostics. Learning and teaching magnetic resonance is challenging since it requires advanced knowledge of condensed matter physics and quantum mechanics. Driven by the need to popularize this technologically impactful phenomenon, we develop an inexpensive table-top demonstration experiment. It unveils the magnetic resonance of a hand-held compass in the magnetic fields of a permanent magnet. The setup provides an immediate visualization of the underlying physical concepts and allows for their translation to broad student audiences.
We describe and discuss an experimental set-up which allows undergraduate and graduate students to view and study magnetic levitation on a type-I superconductor. The demonstration can be repeated many times using one readily available 25 liter liquid
Covariational reasoning -- reasoning about how changes in one quantity relate to changes in another quantity -- has been examined extensively in mathematics education research. Little research has been done, however, on covariational reasoning in int
Magnetic Resonance Imaging has become nowadays an indispensable tool with applications ranging from medicine to material science. However, so far the physical limits of the maximum achievable experimental contrast were unknown. We introduce an approa
The error-robust and short composite operations named ConCatenated Composite Pulses (CCCPs), developed as high-precision unitary operations in quantum information processing (QIP), are derived from composite pulses widely employed in nuclear magnetic
We study thermal instability in NbN superconducting stripline resonators. The system exhibits extreme nonlinearity near a bifurcation, which separates a monostable zone and an astable one. The lifetime of the metastable state, which is locally stable