ﻻ يوجد ملخص باللغة العربية
We present a study at next-to-leading-order (NLO) of the process $pp to W^pm Z to ell u_l ell^+ ell^-$, where $ell,ell =e, mu$, at the Large Hadron Collider. We include the full NLO QCD corrections and the NLO electroweak (EW) corrections in the double-pole approximation. We define eight fiducial polarization coefficients directly constructed from the polar-azimuthal angular distribution of the decay leptons. These coefficients depend strongly on the kinematical cuts on the transverse momentum or rapidity of the individual leptons. Similarly, fiducial polarization fractions are also defined and they can be directly related to the fiducial coefficients. We perform a detailed analysis of the NLO QCD+EW fiducial polarization observables including theoretical uncertainties stemming from the scale variation and parton distribution function uncertainties, using the fiducial phase space defined by the ATLAS and CMS experiments. We provide results in the helicity coordinate system and in the Collins-Soper coordinate system, at a center-of-mass energy of 13 TeV. The EW corrections are found to be important in two of the angular coefficients related to the $Z$ boson, irrespective of the kinematical cuts or the coordinate system. Meanwhile, those EW corrections are very small for the $W^pm$ bosons.
Cross sections and differential distributions for ZA production in association with two jets via vector boson fusion are presented at next-to-leading order in QCD. The leptonic decays of the Z boson with full off-shell effects and spin correlations a
We present an implementation of electroweak Z-boson production in association with two jets at hadron colliders in the POWHEG framework, a method that allows the interfacing of NLO-QCD calculations with parton-shower Monte Carlo programs. We focus on
I describe a subtraction scheme for the next-to-next-to-leading order calculation of single inclusive production at hadron colliders. Such processes include Drell-Yan, W^{+/-}, Z and Higgs Boson production. The key to such a calculation is a treatmen
We present a fully automated framework based on the FeynRules and MadGraph5 aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino in
In this article we calculate the next-to-leading order (NLO) QCD corrections for single on-shell top-quark production in association with two jets at proton-proton colliders. The tW channel is assumed to be measured independently. The QCD corrections