ﻻ يوجد ملخص باللغة العربية
The magnetic ground state in highly ordered double perovskites LaSr$_{1-x}$Ca$_x$NiReO$_6$ ($x$ = 0.0, 0.5, 1.0) were studied in view of the Goodenough-Kanamori rules of superexchange interactions. In LaSrNiReO$_6$, Ni and Re sublattices are found to exhibit curious magnetic states, but do not show any long range magnetic ordering. The magnetic transition at $sim$ 255 K is identified with the Re sublattic magnetic ordering. The sublattice interactions are tuned by modifying the Ni-O-Re bond angles via changing the lattice structure through Ca doping. Upon Ca doping, the Ni and Re sublattices start to display a ferrimagnetically ordered state at low temperature. The neutron powder diffraction reveals a canted alignment between the Ni and the Re sublattices, while the individual sublattice is ferromagnetic. The transition temperature of the ferrimagnetic phase increases monotonically with increasing Ca concentration.
Spin-orbit coupling (SOC) plays a crucial role in magnetic and electronic properties of 5$d$ iridates. In this paper we have experimentally investigated the structural and physical properties of a series of Ir-based double perovskite compounds Pr$_{2
The magnetism of the double perovskite compounds SLFCOx ($x$ = 0, 1, 2) are contrasted using magnetization, neutron diffraction and electron paramagnetic resonance with the support from density functional theory calculations. LFCO is identified as a
We have studied Ir spin and orbital magnetic moments in the double perovskites La$_{2-x}$Sr$_x$CoIrO$_6$ by x-ray magnetic circular dichroism. In La$_2$CoIrO$_6$, Ir$^{4+}$ couples antiferromagnetically to the weak ferromagnetic moment of the canted
The Fe electronic structure and magnetism in (i) monoclinic Ca$_2$FeReO$_6$ with a metal-insulator transition at $T_{MI} sim 140$ K and (ii) quasi-cubic half-metallic Ba$_2$FeReO$_6$ ceramic double perovskites are probed by soft x-ray absorption spec
We investigate the doping-induced changes in the electronic structure of CeB$_6$ on a series of substituted Ce$_{1-x}R_x$B$_6$ samples ($R$ = La, Nd) using diffuse neutron scattering. We observe a redistribution of magnetic spectral weight across the