ترغب بنشر مسار تعليمي؟ اضغط هنا

AKARI Mission Program: Excavating Mass Loss History in Extended Dust Shells of Evolved Stars (MLHES) I. Far-IR Photometry

250   0   0.0 ( 0 )
 نشر من قبل Toshiya Ueta
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed a far-IR imaging survey of the circumstellar dust shells of 144 evolved stars as a mission programme of the AKARI infrared astronomical satellite using the Far-Infrared Surveyor (FIS) instrument. With this survey, we deliver far-IR surface brightness distributions of roughly 10 x 40 or 10 x 20 areas of the sky around the target evolved stars in the four FIS bands at 65, 90, 140, and 160 microns. Our objectives are to characterize the far-IR surface brightness distributions of the cold dust component in the circumstellar dust shells, from which we derive the amount of cold dust grains as low as 20 K and empirically establish the history of the early mass loss history. In this first installment of the series, we introduce the project and its aims, describe the observations, data reduction, and surface brightness correction process, and present the entire data set along with the results of integrated photometry measurements (i.e., the central source and circumstellar dust shell altogether). We find that (1) far-IR emission is detected from all but one object at the spatial resolution about 30 - 50 in the corresponding bands, (2) roughly 60 - 70 % of the target sources show some extension, (3) previously unresolved nearby objects in the far-IR are now resolved around 28 target sources, (4) the results of photometry measurements are reasonable with respect to the entries in the AKARI/FIS Bright Source Catalogue, despite the fact that the targets are assumed to be point-sources when catalogue flux densities were computed, and (5) an IR two-color diagram would place the target sources in a roughly linear distribution that may correlate with the age of the circumstellar dust shell and can potentially be used to identify which targets are more extended than others.



قيم البحث

اقرأ أيضاً

MESS (Mass-loss of Evolved StarS) is a Guaranteed Time Key Program that uses the PACS and SPIRE instruments on board the Herschel Space Observatory to observe a representative sample of evolved stars, that include asymptotic giant branch (AGB) and po st-AGB stars, planetary nebulae and red supergiants, as well as luminous blue variables, Wolf-Rayet stars and supernova remnants. In total, of order 150 objects are observed in imaging and about 50 objects in spectroscopy. This paper describes the target selection and target list, and the observing strategy. Key science projects are described, and illustrated using results obtained during Herschels science demonstration phase. Aperture photometry is given for the 70 AGB and post-AGB stars observed up to October 17, 2010, which constitutes the largest single uniform database of far-IR and sub-mm fluxes for late-type stars.
We present JCMT SCUBA-2 $450mu$m and $850mu$m observations of 14 Asymptotic Giant Branch (AGB) stars (9 O--rich, 4 C-rich and 1 S--type) and one Red Supergiant (RSG) in the Solar Neighbourhood. We combine these observations with emph{Herschel}/PACS o bservations at $70mu$m and $160mu$m and obtain azimuthally-averaged surface-brightness profiles and their PSF subtracted residuals. The extent of the SCUBA-2 850 $mu$m emission ranges from 0.01 to 0.16 pc with an average of $sim40%$ of the total flux being emitted from the extended component. By fitting a modified black-body to the four-point SED at each point along the radial profile we derive the temperature ($T$), spectral index of dust emissivity ($beta$) and dust column density ($Sigma$) as a function of radius. For all the sources, the density profile deviates significantly from what is expected for a constant mass-loss rate, showing that all the sources have undergone variations in mass-loss during this evolutionary phase. In combination with results from CO line emission, we determined the dust-to-gas mass ratio for all the sources in our sample. We find that, when sources are grouped according to their chemistry, the resulting average dust-to-gas ratios are consistent with the respective canonical values. However we see a range of values with significant scatter which indicate the importance of including spatial information when deriving these numbers.
We have observed a sample of 35 long-period variables and four Cepheid variables in the vicinity of 23 Galactic globular clusters using the Infrared Spectrograph on the Spitzer Space Telescope. The long-period variables in the sample cover a range of metallicities from near solar to about 1/40th solar. The dust mass-loss rate from the stars increases with pulsation period and bolometric luminosity. Higher mass-loss rates are associated with greater contributions from silicate grains. The dust mass-loss rate also depends on metallicity. The dependence is most clear when segregating the sample by dust composition, less clear when segregating by bolometric magnitude, and absent when segregating by period. The spectra are rich in solid-state and molecular features. Emission from alumina dust is apparent across the range of metallicities. Spectra with a 13-um dust emission feature, as well as an associated feature at 20 um, also appear at most metallicities. Molecular features in the spectra include H_2O bands at 6.4-6.8 um, seen in both emission and absorption, SO_2 absorption at 7.3-7.5 um, and narrow emission bands from CO_2 from 13.5 to 16.8 um. The star Lynga 7 V1 has an infrared spectrum revealing it to be a carbon star, adding to the small number of carbon stars associated with Galactic globular clusters.
We aim to (1) set up simple and general analytical expressions to estimate mass-loss rates of evolved stars, and (2) from those calculate estimates for the mass-loss rates of asymptotic giant branch (AGB), red supergiant (RSG), and yellow hypergiant stars in our galactic sample. Rotationally excited lines of CO are a very robust diagnostic in the study of circumstellar envelopes (CSEs). When sampling different layers of the CSE, observations of these molecular lines lead to detailed profiles of kinetic temperature, expansion velocity, and density. A state-of-the-art, nonlocal thermal equilibrium, and co-moving frame radiative transfer code that predicts CO line intensities in the CSEs of late-type stars is used in deriving relations between stellar and molecular-line parameters, on the one hand, and mass-loss rate, on the other. We present analytical expressions for estimating the mass-loss rates of evolved stellar objects for 8 rotational transitions of the CO molecule, apply them to our extensive CO data set covering 47 stars, and compare our results to those of previous studies. Our expressions account for line saturation and resolving of the envelope, thereby allowing accurate determination of very high mass-loss rates. We argue that, for estimates based on a single rotational line, the CO(2-1) transition provides the most reliable mass-loss rate. The mass-loss rates calculated for the AGB stars range from 4x10^-8 Msun/yr up to 8x10^-5 Msun/yr. For RSGs they reach values between 2x10^-7 Msun/yr and 3x10^-4 Msun/yr. The estimates for the set of CO transitions allow time variability to be identified in the mass-loss rate. Possible mass-loss-rate variability is traced for 7 of the sample stars. We find a clear relation between the pulsation periods of the AGB stars and their derived mass-loss rates, with a levelling off at approx. 3x10^-5 Msun/yr for periods exceeding 850 days.
We present the results of our survey of 1612 MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Large Magellanic Cloud. We have discovered four new circumstellar maser sources in the LMC, an d increased the number of reliable wind speeds from IR stars in the LMC from 5 to 13. Using our new wind speeds, as well as those from Galactic sources, we have derived an updated relation for dust driven winds: $v_{exp} propto Z L^{0.4}$. We compare the sub-solar metallicity LMC OH/IR stars with carefully selected samples of more metal-rich OH/IR stars, also at known distances, in the Galactic Centre and Galactic Bulge. For 8 of the Bulge stars we derive pulsation periods for the first time, using near-IR photometry from the VVV survey. We have modeled our LMC OH/IR stars and developed an empirical method of deriving gas-to-dust ratios and mass loss rates by scaling the models to the results from maser profiles. We have done this also for samples in the Galactic Centre and Bulge and derived a new mass loss prescription that includes luminosity, pulsation period, and gas-to-dust ratio $dot{M} = 1.06^{+3.5}_{-0.8} rm{ cdot }10^{-5},(L/10^4,rm{L}_odot)^{0.9pm0.1}(P/500,rm{d})^{0.75pm0.3} (r_{gd}/200)^{-0.03pm0.07},rm{M_{odot}}, yr^{-1}$. The tightest correlation is found between mass loss rate and luminosity. We find that the gas-to-dust ratio has little effect on the mass loss of oxygen-rich AGB stars and RSGs within the Galaxy and the LMC. This suggests that mass loss of oxygen-rich AGB stars and RSGs is (nearly) independent of metallicity between a half and twice solar.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا