ترغب بنشر مسار تعليمي؟ اضغط هنا

The anatomy of Reddit: An overview of academic research

141   0   0.0 ( 0 )
 نشر من قبل Alexey Medvedev N.
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Online forums provide rich environments where users may post questions and comments about different topics. Understanding how people behave in online forums may shed light on the fundamental mechanisms by which collective thinking emerges in a group of individuals, but it has also important practical applications, for instance to improve user experience, increase engagement or automatically identify bullying. Importantly, the datasets generated by the activity of the users are often openly available for researchers, in contrast to other sources of data in computational social science. In this survey, we map the main research directions that arose in recent years and focus primarily on the most popular platform, Reddit. We distinguish and categorise research depending on their focus on the posts or on the users, and point to different types of methodologies to extract information from the structure and dynamics of the system. We emphasize the diversity and richness of the research in terms of questions and methods, and suggest future avenues of research.



قيم البحث

اقرأ أيضاً

Massive amounts of fake news and conspiratorial content have spread over social media before and after the 2016 US Presidential Elections despite intense fact-checking efforts. How do the spread of misinformation and fact-checking compete? What are t he structural and dynamic characteristics of the core of the misinformation diffusion network, and who are its main purveyors? How to reduce the overall amount of misinformation? To explore these questions we built Hoaxy, an open platform that enables large-scale, systematic studies of how misinformation and fact-checking spread and compete on Twitter. Hoaxy filters public tweets that include links to unverified claims or fact-checking articles. We perform k-core decomposition on a diffusion network obtained from two million retweets produced by several hundred thousand accounts over the six months before the election. As we move from the periphery to the core of the network, fact-checking nearly disappears, while social bots proliferate. The number of users in the main core reaches equilibrium around the time of the election, with limited churn and increasingly dense connections. We conclude by quantifying how effectively the network can be disrupted by penalizing the most central nodes. These findings provide a first look at the anatomy of a massive online misinformation diffusion network.
197 - Nicholas Botzer , Shawn Gu , 2021
Moral outrage has become synonymous with social media in recent years. However, the preponderance of academic analysis on social media websites has focused on hate speech and misinformation. This paper focuses on analyzing moral judgements rendered o n social media by capturing the moral judgements that are passed in the subreddit /r/AmITheAsshole on Reddit. Using the labels associated with each judgement we train a classifier that can take a comment and determine whether it judges the user who made the original post to have positive or negative moral valence. Then, we use this classifier to investigate an assortment of website traits surrounding moral judgements in ten other subreddits, including where negative moral users like to post and their posting patterns. Our findings also indicate that posts that are judged in a positive manner will score higher.
Research projects are primarily collaborative in nature through internal and external partnerships, but what role does funding play in their formation? Here, we examined over 43,000 funded projects in the past three decades, enabling us to characteri se changes in the funding landscape and their impacts on the underlying collaboration patterns. We observed rising inequality in the distribution of funding and its effect was most noticeable at the institutional level in which the leading universities diversified their collaborations and increasingly became the knowledge brokers. Furthermore, these universities formed a cohesive core through their close ties, and such reliance appeared to be a key for their research success, with the elites in the core over-attracting resources but in turn rewarding in both research breadth and depth. Our results reveal how collaboration networks undergo previously unknown adaptive organisation in response to external driving forces, which can have far-reaching implications for future policy.
Nowadays users get informed and shape their opinion through social media. However, the disintermediated access to contents does not guarantee quality of information. Selective exposure and confirmation bias, indeed, have been shown to play a pivotal role in content consumption and information spreading. Users tend to select information adhering (and reinforcing) their worldview and to ignore dissenting information. This pattern elicits the formation of polarized groups -- i.e., echo chambers -- where the interaction with like-minded people might even reinforce polarization. In this work we address news consumption around Brexit in UK on Facebook. In particular, we perform a massive analysis on more than 1 Million users interacting with Brexit related posts from the main news providers between January and July 2016. We show that consumption patterns elicit the emergence of two distinct communities of news outlets. Furthermore, to better characterize inner group dynamics, we introduce a new technique which combines automatic topic extraction and sentiment analysis. We compare how the same topics are presented on posts and the related emotional response on comments finding significant differences in both echo chambers and that polarization influences the perception of topics. Our results provide important insights about the determinants of polarization and evolution of core narratives on online debating.
62 - Srayan Datta , Eytan Adar 2018
Anti-social behaviors in social media can happen both at user and community levels. While a great deal of attention is on the individual as an aggressor, the banning of entire Reddit subcommunities (i.e., subreddits) demonstrates that this is a multi -layer concern. Existing research on inter-community conflict has largely focused on specific subcommunities or ideological opponents. However, antagonistic behaviors may be more pervasive and integrate into the broader network. In this work, we study the landscape of conflicts among subreddits by deriving higher-level (community) behaviors from the way individuals are sanctioned and rewarded. By constructing a conflict network, we characterize different patterns in subreddit-to-subreddit conflicts as well as communities of co-targeted subreddits. By analyzing the dynamics of these interactions, we also observe that the conflict focus shifts over time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا