ﻻ يوجد ملخص باللغة العربية
We propose a novel problem formulation of continuous-time information propagation on heterogenous networks based on jump stochastic differential equations (SDE). The structure of the network and activation rates between nodes are naturally taken into account in the SDE system. This new formulation allows for efficient and stable algorithm for many challenging information propagation problems, including estimations of individual activation probability and influence level, by solving the SDE numerically. To this end, we develop an efficient numerical algorithm incorporating variance reduction; furthermore, we provide theoretical bounds for its sample complexity. Moreover, we show that the proposed jump SDE approach can be applied to a much larger class of critical information propagation problems with more complicated settings. Numerical experiments on a variety of synthetic and real-world propagation networks show that the proposed method is more accurate and efficient compared with the state-of-the-art methods.
We consider the problem of predicting the time evolution of influence, the expected number of activated nodes, given a set of initially active nodes on a propagation network. To address the significant computational challenges of this problem on larg
In this paper, we provide a one-to-one correspondence between the solution Y of a BSDE with singular terminal condition and the solution H of a BSDE with singular generator. This result provides the precise asymptotic behavior of Y close to the final
We develop in this work a numerical method for stochastic differential equations (SDEs) with weak second order accuracy based on Gaussian mixture. Unlike the conventional higher order schemes for SDEs based on It^o-Taylor expansion and iterated It^o
The Schrodinger equation in the presence of an external electromagnetic field is an important problem in computational quantum mechanics. It also provides a nice example of a differential equation whose flow can be split with benefit into three parts
We study the existence and propagation of singularities of the solution to a one-dimensional linear stochastic wave equation driven by an additive Gaussian noise that is white in time and colored in space. Our approach is based on a simultaneous law