ﻻ يوجد ملخص باللغة العربية
We study mass deformations of certain three dimensional $mathcal{N}=4$ Superconformal Field Theories (SCFTs) that have come to be called $T^rho[G]$ theories. These are associated to tame defects of the six dimensional $(0,2)$ SCFT $X[mathfrak{j}]$ for $mathfrak{j}=A,D,E$. We describe these deformations using a refined version of the theory of sheets, a subject of interest in Geometric Representation Theory. In mathematical terms, we parameterize local mass-like deformations of the tamely ramified Hitchin integrable system and identify the subset of the deformations that do admit an interpretation as a mass deformation for the theories under consideration. We point out the existence of non-trivial Rigid SCFTs among these theories. We classify the Rigid theories within this set of SCFTs and give a description of their Higgs and Coulomb branches. We then study the implications for the endpoints of RG flows triggered by mass deformations in these 3d $mathcal{N}=4$ theories. Finally, we discuss connections with the recently proposed idea of Symplectic Duality and describe some conjectures about its action.
Recent work on 6D superconformal field theories (SCFTs) has established an intricate correspondence between certain Higgs branch deformations and nilpotent orbits of flavor symmetry algebras associated with T-branes. In this paper, we return to the s
Recent work has established a uniform characterization of most 6D SCFTs in terms of generalized quivers with conformal matter. Compactification of the partial tensor branch deformation of these theories on a $T^2$ leads to 4D $mathcal{N} = 2$ SCFTs w
We analyze the N=2 superconformal field theories that arise when a pair of D3-branes probe an F-theory singularity from the perspective of the associated vertex operator algebra. We identify these vertex operator algebras for all cases; we find that
We use holographic renormalization of minimal $mathcal{N}=2$ gauged supergravity in order to derive the general form of the quantum Ward identities for 3d $mathcal{N}=2$ and 4d $mathcal{N}=1$ superconformal theories on general curved backgrounds, inc
We consider a class of 6D superconformal field theories (SCFTs) which have a large $N$ limit and a semi-classical gravity dual description. Using the quiver-like structure of 6D SCFTs we study a subsector of operators protected from large operator mi