ﻻ يوجد ملخص باللغة العربية
We forecast the impact of weak lensing (WL) cluster mass calibration on the cosmological constraints from the X-ray selected galaxy cluster counts in the upcoming eROSITA survey. We employ a prototype cosmology pipeline to analyze mock cluster catalogs. Each cluster is sampled from the mass function in a fiducial cosmology and given an eROSITA count rate and redshift, where count rates are modeled using the eROSITA effective area, a typical exposure time, Poisson noise and the scatter and form of the observed X-ray luminosity-- and temperature--mass--redshift relations. A subset of clusters have mock shear profiles to mimic either those from DES and HSC or from the future Euclid and LSST surveys. Using a count rate selection, we generate a baseline cluster cosmology catalog that contains 13k clusters over 14,892~deg$^2$ of extragalactic sky. Low mass groups are excluded using raised count rate thresholds at low redshift. Forecast parameter uncertainties for $Omega_mathrm{M}$, $sigma_8$ and $w$ are 0.023 (0.016; 0.014), 0.017 (0.012; 0.010), and 0.085 (0.074; 0.071), respectively, when adopting DES+HSC WL (Euclid; LSST), while marginalizing over the sum of the neutrino masses. A degeneracy between the distance--redshift relation and the parameters of the observable--mass scaling relation limits the impact of the WL calibration on the $w$ constraints, but with BAO measurements from DESI an improved determination of $w$ to 0.043 becomes possible. With Planck CMB priors, $Omega_text{M}$ ($sigma_8$) can be determined to $0.005$ ($0.007$), and the summed neutrino mass limited to $sum m_ u < 0.241$ eV (at 95%). If systematics on the group mass scale can be controlled, the eROSITA group and cluster sample with 43k objects and LSST WL could constrain $Omega_mathrm{M}$ and $sigma_8$ to 0.007 and $w$ to 0.050.
In light of the tension in cosmological constraints reported by the Planck team between their SZ-selected cluster counts and Cosmic Microwave Background (CMB) temperature anisotropies, we compare the Planck cluster mass estimates with robust, weak-le
Weak gravitational lensing of background galaxies provides a direct probe of the projected matter distribution in and around galaxy clusters. Here we present a self-contained pedagogical review of cluster--galaxy weak lensing, covering a range of top
We present the mass calibration for galaxy clusters detected with the AMICO code in KiDS DR3 data. The cluster sample comprises $sim$ 7000 objects and covers the redshift range 0.1 < $z$ < 0.6. We perform a weak lensing stacked analysis by binning th
In this paper, we analyze in detail with numerical simulations how the mask effect can influence the weak lensing peak statistics reconstructed from the shear measurement of background galaxies. It is found that high peak fractions are systematically
Using $sim$140 deg$^2$ Subaru Hyper Suprime-Cam (HSC) survey data, we stack the weak lensing (WL) signal around five Planck clusters found within the footprint. This yields a 15$sigma$ detection of the mean Planck cluster mass density profile. The fi