ﻻ يوجد ملخص باللغة العربية
Electromagnetic waves carry an infinite number of conserved quantities. We give a simple explanation of this fact, which also shows how to write down conserved quantities at will and calculate their associated symmetry transformations. This framework is then used to discuss decompositions of optical angular momentum, and to prove that magnetic helicity is conserved for beams and pulses. Finally we describe an infinite set of electromagnetic conserved quantities that corresponds to the Virasoro generators of conformal field theories. In the quantum case the Virasoro generators acquire a central charge in their algebra, an example of a quantum anomaly.
A fundamental result of classical electromagnetism is that Maxwells equations imply that electric charge is locally conserved. Here we show the converse: Local charge conservation implies the local existence of fields satisfying Maxwells equations. T
When a measurement is made on a system that is not in an eigenstate of the measured observable, it is often assumed that some conservation law has been violated. Discussions of the effect of measurements on conserved quantities often overlook the pos
Recent observations of the luminosity-red shift relation of distant type Ia supernovae established the fact that the expansion of the universe is accelerated. This is interpreted by saying that there exists some kind of agent (called dark energy), wh
Conserved quantities are crucial in quantum physics. Here we discuss a general scenario of Hamiltonians. All the Hamiltonians within this scenario share a common conserved quantity form. For unitary parametrization processes, the characteristic opera
We provide a unified semiclassical theory for the conserved current of nonconserved quantities, and manifest it in two physical contexts: the spin current of Bloch electrons and the charge current of mean-field Bogoliubov quasiparticles. Several long