A Continuous-Time View of Early Stopping for Least Squares


الملخص بالإنكليزية

We study the statistical properties of the iterates generated by gradient descent, applied to the fundamental problem of least squares regression. We take a continuous-time view, i.e., consider infinitesimal step sizes in gradient descent, in which case the iterates form a trajectory called gradient flow. Our primary focus is to compare the risk of gradient flow to that of ridge regression. Under the calibration $t=1/lambda$---where $t$ is the time parameter in gradient flow, and $lambda$ the tuning parameter in ridge regression---we prove that the risk of gradient flow is no less than 1.69 times that of ridge, along the entire path (for all $t geq 0$). This holds in finite samples with very weak assumptions on the data model (in particular, with no assumptions on the features $X$). We prove that the same relative risk bound holds for prediction risk, in an average sense over the underlying signal $beta_0$. Finally, we examine limiting risk expressions (under standard Marchenko-Pastur asymptotics), and give supporting numerical experiments.

تحميل البحث