ترغب بنشر مسار تعليمي؟ اضغط هنا

A Fusion Approach for Multi-Frame Optical Flow Estimation

100   0   0.0 ( 0 )
 نشر من قبل Zhile Ren
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

To date, top-performing optical flow estimation methods only take pairs of consecutive frames into account. While elegant and appealing, the idea of using more than two frames has not yet produced state-of-the-art results. We present a simple, yet effective fusion approach for multi-frame optical flow that benefits from longer-term temporal cues. Our method first warps the optical flow from previous frames to the current, thereby yielding multiple plausible estimates. It then fuses the complementary information carried by these estimates into a new optical flow field. At the time of writing, our method ranks first among published results in the MPI Sintel and KITTI 2015 benchmarks. Our models will be available on https://github.com/NVlabs/PWC-Net.



قيم البحث

اقرأ أيضاً

In this work, we present FFB6D, a Full Flow Bidirectional fusion network designed for 6D pose estimation from a single RGBD image. Our key insight is that appearance information in the RGB image and geometry information from the depth image are two c omplementary data sources, and it still remains unknown how to fully leverage them. Towards this end, we propose FFB6D, which learns to combine appearance and geometry information for representation learning as well as output representation selection. Specifically, at the representation learning stage, we build bidirectional fusion modules in the full flow of the two networks, where fusion is applied to each encoding and decoding layer. In this way, the two networks can leverage local and global complementary information from the other one to obtain better representations. Moreover, at the output representation stage, we designed a simple but effective 3D keypoints selection algorithm considering the texture and geometry information of objects, which simplifies keypoint localization for precise pose estimation. Experimental results show that our method outperforms the state-of-the-art by large margins on several benchmarks. Code and video are available at url{https://github.com/ethnhe/FFB6D.git}.
We propose RIFE, a Real-time Intermediate Flow Estimation algorithm for Video Frame Interpolation (VFI). Many recent flow-based VFI methods first estimate the bi-directional optical flows, then scale and reverse them to approximate intermediate flows , leading to artifacts on motion boundaries. RIFE uses a neural network named IFNet that can directly estimate the intermediate flows from coarse-to-fine with much better speed. We design a privileged distillation scheme for training intermediate flow model, which leads to a large performance improvement. Experiments demonstrate that RIFE is flexible and can achieve state-of-the-art performance on several public benchmarks. The code is available at url{https://github.com/hzwer/arXiv2020-RIFE}
Generative deep learning has sparked a new wave of Super-Resolution (SR) algorithms that enhance single images with impressive aesthetic results, albeit with imaginary details. Multi-frame Super-Resolution (MFSR) offers a more grounded approach to th e ill-posed problem, by conditioning on multiple low-resolution views. This is important for satellite monitoring of human impact on the planet -- from deforestation, to human rights violations -- that depend on reliable imagery. To this end, we present HighRes-net, the first deep learning approach to MFSR that learns its sub-tasks in an end-to-end fashion: (i) co-registration, (ii) fusion, (iii) up-sampling, and (iv) registration-at-the-loss. Co-registration of low-resolution views is learned implicitly through a reference-frame channel, with no explicit registration mechanism. We learn a global fusion operator that is applied recursively on an arbitrary number of low-resolution pairs. We introduce a registered loss, by learning to align the SR output to a ground-truth through ShiftNet. We show that by learning deep representations of multiple views, we can super-resolve low-resolution signals and enhance Earth Observation data at scale. Our approach recently topped the European Space Agencys MFSR competition on real-world satellite imagery.
The past few years have witnessed great success in applying deep learning to enhance the quality of compressed image/video. The existing approaches mainly focus on enhancing the quality of a single frame, not considering the similarity between consec utive frames. Since heavy fluctuation exists across compressed video frames as investigated in this paper, frame similarity can be utilized for quality enhancement of low-quality frames given their neighboring high-quality frames. This task is Multi-Frame Quality Enhancement (MFQE). Accordingly, this paper proposes an MFQE approach for compressed video, as the first attempt in this direction. In our approach, we firstly develop a Bidirectional Long Short-Term Memory (BiLSTM) based detector to locate Peak Quality Frames (PQFs) in compressed video. Then, a novel Multi-Frame Convolutional Neural Network (MF-CNN) is designed to enhance the quality of compressed video, in which the non-PQF and its nearest two PQFs are the input. In MF-CNN, motion between the non-PQF and PQFs is compensated by a motion compensation subnet. Subsequently, a quality enhancement subnet fuses the non-PQF and compensated PQFs, and then reduces the compression artifacts of the non-PQF. Also, PQF quality is enhanced in the same way. Finally, experiments validate the effectiveness and generalization ability of our MFQE approach in advancing the state-of-the-art quality enhancement of compressed video. The code is available at https://github.com/RyanXingQL/MFQEv2.0.git.
Reliable seed yield estimation is an indispensable step in plant breeding programs geared towards cultivar development in major row crops. The objective of this study is to develop a machine learning (ML) approach adept at soybean [textit{Glycine max } L. (Merr.)] pod counting to enable genotype seed yield rank prediction from in-field video data collected by a ground robot. To meet this goal, we developed a multi-view image-based yield estimation framework utilizing deep learning architectures. Plant images captured from different angles were fused to estimate the yield and subsequently to rank soybean genotypes for application in breeding decisions. We used data from controlled imaging environment in field, as well as from plant breeding test plots in field to demonstrate the efficacy of our framework via comparing performance with manual pod counting and yield estimation. Our results demonstrate the promise of ML models in making breeding decisions with significant reduction of time and human effort, and opening new breeding methods avenues to develop cultivars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا