ﻻ يوجد ملخص باللغة العربية
Microscopic many-body theory coupled to Maxwells equation is used to investigate dual-wavelength operation in vertical external-cavity surface-emitting lasers. The intrinsically dynamic nature of coexisting emission wavelengths in semiconductor lasers is associated with characteristic non-equilibrium carrier dynamics which causes significant deformations of the quasi-equilibrium gain and carrier inversion. Extended numerical simulations are employed to efficiently investigate the parameter space to identify the regime for two-wavelength operation. Using a frequency selective intracavity etalon, two families of modes are stabilized with dynamical interchange of the strongest emission peaks. For this operation mode, anti-correlated intensity noise is observed in agreement with the experiment. A method using effective frequency selective filtering is suggested for stabilization genuine dual-wavelength output.
Temporal Localized States (TLSs) are individually addressable structures traveling in optical resonators. They can be used as bits of information and to generate frequency combs with tunable spectral density. We show that a pair of specially designed
A microscopic study of mode-locked pulse generation is presented for vertical external-cavity surface-emitting lasers utilizing type-II quantum well configurations. The coupled Maxwell semiconductor Bloch equations are solved numerically where the ty
We show that the nonlinear polarization dynamics of a vertical-cavity surface-emitting laser placed into an external cavity leads to the formation of temporal vectorial dissipative solitons. These solitons arise as cycles in the polarization orientat
Self-mode-locking has become an emerging path to the generation of ultrashort pulses with vertical-external-cavity surface-emitting lasers. In our work, a strong Kerr nonlinearity that is so far assumed to give rise to mode-locked operation is eviden
Vertical cavity surface emitting lasers (VCSELs) have made indispensable contributions to the development of modern optoelectronic technologies. However, arbitrary beam shaping of VCSELs within a compact system still remains inaccessible till now. Th