ترغب بنشر مسار تعليمي؟ اضغط هنا

New type of solutions of Yang-Baxter equations, quantum entanglement and related physical models

118   0   0.0 ( 0 )
 نشر من قبل Li-Wei Yu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Starting from the Kauffman-Lomonaco braiding matrix transforming the natural basis to Bell states, the spectral parameter describing the entanglement is introduced through Yang-Baxterization. It gives rise to a new type of solutions for Yang-Baxter equation, called the type-II that differs from the familiar solution called type-I of YBE associated with the usual chain models. The Majorana fermionic version of type-II yields the Kitaev Hamiltonian. The introduced $ell_1$ -norm leads to the maximum of the entanglement by taking the extreme value and shows that it is related to the Wigners D-function. Based on the Yang-Baxter equation the 3-body S-Matrix for type-II is explicitly given. Different from the type-I solution, the type-II solution of YBE should be considered in describing quantum information. The idea is further extended to $mathbb{Z}_3$ parafermion model based on $SU(3)$ principal representation. The type-II is in difference from the familiar type-I in many respects. For example, the quantities corresponding to velocity in the chain models obey the Lorentzian additivity $frac{u+v}{1+uv}$ rather than Galilean rule $(u+v)$. Most possibly, for the type-II solutions of YBE there may not exist RTT relation. Further more, for $mathbb{Z}_3$ parafermion model we only need the rational Yang-Baxterization, which seems like trigonometric. Similar discussions are also made in terms of generalized Yang-Baxter equation with three spin spaces ${1,frac{1}{2},frac{1}{2}}$.



قيم البحث

اقرأ أيضاً

115 - Li-Wei Yu , Mo-Lin Ge 2016
The relationships between quantum entangled states and braid matrices have been well studied in recent years. However, most of the results are based on qubits. In this paper, We investigate the applications of 2-qutrit entanglement in the braiding as sociated with $mathbb{Z}_3$ parafermion. The 2-qutrit entangled state $|Psi(theta)rangle$, generated by acting the localized unitary solution $breve{R}(theta)$ of YBE on 2-qutrit natural basis, achieves its maximal $ell_1$-norm and maximal von Neumann entropy simultaneously at $theta=pi/3$. Meanwhile, at $theta=pi/3$, the solutions of YBE reduces braid matrices, which implies the role of $ell_1$-norm and entropy plays in determining real physical quantities. On the other hand, we give a new realization of 4-anyon topological basis by qutrit entangled states, then the $9times9$ localized braid representation in 4-qutrit tensor product space $(mathbb{C}^3)^{otimes 4}$ are reduced to Jones representation of braiding in the 4-anyon topological basis. Hence, we conclude that the entangled states are powerful tools in analysing the characteristics of braiding and $breve{R}$-matrix.
131 - Gorjan Alagic , Michael Jarret , 2015
Any solution to the Yang-Baxter equation yields a family of representations of braid groups. Under certain conditions, identified by Turaev, the appropriately normalized trace of these representations yields a link invariant. Any Yang-Baxter solution can be interpreted as a two-qudit quantum gate. Here we show that if this gate is non-entangling, then the resulting invariant of knots is trivial. We thus obtain a general connection between topological entanglement and quantum entanglement, as suggested by Kauffman et al.
124 - A.P.Isaev , S.O.Krivonos 2021
We construct characteristic identities for the split (polarized) Casimir operators of the simple Lie algebras in defining (minimal fundamental) and adjoint representations. By means of these characteristic identities, for all simple Lie algebras we d erive explicit formulae for invariant projectors onto irreducible subrepresentations in T^{otimes 2} in two cases, when T is the defining and the adjoint representation. In the case when T is the defining representation, these projectors and the split Casimir operator are used to explicitly write down invariant solutions of the Yang-Baxter equations. In the case when T is the adjoint representation, these projectors and characteristic identities are considered from the viewpoint of the universal description of the simple Lie algebras in terms of the Vogel parameters.
140 - Li-Wei Yu , Mo-Lin Ge 2015
We construct the 1D $mathbb{Z}_3$ parafermionic model based on the solution of Yang-Baxter equation and express the model by three types of fermions. It is shown that the $mathbb{Z}_3$ parafermionic chain possesses both triple degenerate ground state s and non-trivial topological winding number. Hence, the $mathbb{Z}_3$ parafermionic model is a direct generalization of 1D $mathbb{Z}_2$ Kitaev model. Both the $mathbb{Z}_2$ and $mathbb{Z}_3$ model can be obtained from Yang-Baxter equation. On the other hand, to show the algebra of parafermionic tripling intuitively, we define a new 3-body Hamiltonian $hat{H}_{123}$ based on Yang-Baxter equation. Different from the Majorana doubling, the $hat{H}_{123}$ holds triple degeneracy at each of energy levels. The triple degeneracy is protected by two symmetry operators of the system, $omega$-parity $P$($omega=e^{{textrm{i}frac{2pi}{3}}}$) and emergent parafermionic operator $Gamma$, which are the generalizations of parity $P_{M}$ and emergent Majorana operator in Lee-Wilczek model, respectively. Both the $mathbb{Z}_3$ parafermionic model and $hat{H}_{123}$ can be viewed as SU(3) models in color space. In comparison with the Majorana models for SU(2), it turns out that the SU(3) models are truly the generalization of Majorana models resultant from Yang-Baxter equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا