ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of Side Chain Isomerism on the Rigidity of Poly(3-alkylthiophenes) in Solutions Revealed by Neutron Scattering

82   0   0.0 ( 0 )
 نشر من قبل Luis Sanchez Diaz
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using small angle neutron scattering, we conducted a detailed structural study of poly(3-alkylthiophenes) dispersed in deuterated dicholorbenzene. The focus was placed on addressing the influence of spatial arrangement of constituent atoms of side chain on backbone conformation. We demonstrate that by impeding the {pi}- {pi} interactions, the branch point in side chain promotes torsional motion between backbone units and results in greater chain flexibility. Our findings highlight the key role of topological isomerism in determining the molecular rigidity and are relevant to the current debate about the condition necessary for optimizing the electronic properties of conducting polymers via side chain engineering.



قيم البحث

اقرأ أيضاً

Recent computational and theoretical studies have shown that the deformation of colloidal suspensions under a steady shear is highly heterogeneous at the particle level and demonstrate a critical influence on the macroscopic deformation behavior. Des pite its relevance to a wide variety of industrial applications of colloidal suspensions, scattering studies focusing on addressing the heterogeneity of the non-equilibrium colloidal structure are scarce thus far. Here, we report the first experimental result using small-angle neutron scattering. From the evolution of strain heterogeneity, we conclude that the shear-induced deformation transforms from nearly affine behavior at low shear rates, to plastic rearrangements when the shear rate is high.
The microscopic deformation mechanism of charged colloidal glasses with extended-range interactions under shear is investigated by in-situ small-angle neutron scattering, and a dynamically correlated region (DCR) is identified. This short-lived regio n provides the resistance to the configurational rearrangement imposed by the external deformation, as evidenced by the evolution of the size of DCR in the shear thinning regime and the quantitative agreement between the local stress sustained by DCR and the macroscopic stress from rheological measurements at low and mediate shear rates. This finding suggests that DCR is an important quantity for microscopically addressing the flow and deformation behavior of strongly interacting colloids.
The flow of colloidal suspensions is ubiquitous in nature and industry. Colloidal suspensions exhibit a wide range of rheological behavior, which should be closely related to the microscopic structure of the systems. With in-situ small-angle neutron scattering complemented by rheological measurements, we investigated the deformation behavior of a charge-stabilized colloidal glass at particle level undergoing steady shear. A short-lived, localized elastic response at particle level, termed as transient elasticity zone (TEZ), was identified from the neutron spectra. The existence of the TEZ is a signature of the dynamical heterogeneity: The body of fluids under shear behaves like an elastic solid within the spatial range of TEZ but like fluid outside the TEZ. The size of TEZ shrinks as the shear rate increases in the shear thinning region, which shows that the shear thinning is accompanied by a diminishing dynamical heterogeneity. More interestingly, the TEZ is found to be the structural unit that provides the resistance to the imposed shear, as evidenced by the quantitative agreement between the local elastic stress sustained by TEZ and the macroscopic stress from rheological measurements at low and moderate shear rates. Besides the charged-stabilized colloidal suspension, a hard-sphere colloidal suspension at the same volume fraction and shear rates was also measured. The result highlights the key role of the electrostatic interparticle repulsion in promoting the local elasticity. Our findings provide an understanding on the nonlinear rheology of interacting colloidal glasses from a micro-mechanical view.
157 - H.L. Liu , F.R. Xu , P.M. Walker 2011
We investigate the influence of deformation on the possible occurrence of long-lived $K$ isomers in Hf isotopes around N=116, using configuration-constrained calculations of potential-energy surfaces. Despite having reduced shape elongation, the mult i-quasiparticle states in $^{186,188}$Hf remain moderately robust against triaxial distortion, supporting the long expected occurrence of exceptionally long-lived isomers. The calculations are compared with available experimental data.
Thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) particles of different sizes are synthesized by varying the concentration of sodium dodecyl sulphate (SDS) in a one-pot method. The sizes, size polydispersities and the thermoresponsivity of the P NIPAM particles are characterized by using dynamic light scattering and scanning electron microscopy. It is observed that the sizes of these particles decrease with increase in SDS concentration. Swelling ratios of PNIPAM particles measured from the thermoresponsive curves are observed to increase with decrease in particle size. This observation is understood by minimizing the Helmholtz free energy of the system with respect to the swelling ratio of the particles. Finally, the dynamics of these particles in jammed aqueous suspensions are investigated by performing rheological measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا