ﻻ يوجد ملخص باللغة العربية
Our first result states that the orthogonal and symplectic Bessel processes are rigid in the sense of Ghosh and Peres. Our argument in the Bessel case proceeds by an estimate of the variance of additive statistics in the spirit of Ghosh and Peres. Second, a sufficient condition for number rigidity of stationary Pfaffian processes, relying on the Kolmogorov criterion for interpolation of stationary processes and applicable, in particular, to pfaffian sine-processes, is given in terms of the asymptotics of the spectral measure for additive statistics.
For a Pfaffian point process we show that its Palm measures, its normalised compositions with multiplicative functionals, and its conditional measures with respect to fixing the configuration in a bounded subset are Pfaffian point processes whose kernels we find explicitly.
We consider a random walk on a homogeneous Poisson point process with energy marks. The jump rates decay exponentially in the A-power of the jump length and depend on the energy marks via a Boltzmann--like factor. The case A=1 corresponds to the phon
The conservation of translation as a symmetry in two-dimensional systems with interaction is a classical subject of statistical mechanics. Here we establish such a result for Gibbsian particle systems with two-body interaction, where the interesting
We study the distribution of eigenvalues of almost-Hermitian random matrices associated with the classical Gaussian and Laguerre unitary ensembles. In the almost-Hermitian setting, which was pioneered by Fyodorov, Khoruzhenko and Sommers in the case
We consider two-dimensional marked point processes which are Gibbsian with a two-body-potential U. U is supposed to have an internal continuous symmetry. We show that under suitable continuity conditions the considered processes are invariant under t