ﻻ يوجد ملخص باللغة العربية
Magnetized plasmas within halos of galaxies leave their footprint on the polarized anisotropies of the cosmic microwave background. The two dominant effects for astrophysical halos are Faraday rotation generating rotation of the plane of linear polarization, and Faraday conversion inducing a leakage from linear polarization to circular polarization. We revisit these sources of secondary anisotropies by computing the angular power spectra of the Faraday rotation angle and of the Faraday conversion rate by the large scale structures. To this end, we use the halo model and we pay special attention to the impact of magnetic field projections. Assuming magnetic fields of halos to be uncorrelated, we found a vanishing 2-halo term, and angular power spectra peaking at multipoles $ellsim10^4$. The Faraday rotation angle is dominated by the contribution of thermal electrons. For the Faraday conversion rate, we found that both thermal electrons and relativistic, non-thermal electrons contribute equally in the most optimistic case for the density and Lorentz factor of relativistic electrons, while in more pessimistic cases the thermal electrons give the dominant contribution. Assuming the magnetic field to be independent of the halo mass, the angular power spectra for both effects roughly scale with the amplitude of matter perturbations as $simsigma_8^3$, and with a very mild dependence with the density of cold dark matter. Introducing a dependence of the magnetic field strength with the halo mass leads to an increase of the scaling with the amplitude of matter fluctuations, up to $simsigma_8^{9.5}$ for Faraday rotation and $simsigma_8^{15}$ for Faraday conversion for a magnetic field strength scaling linearly with the halo mass.
Spatially fluctuating primordial magnetic fields (PMFs) inhomogeneously reheat the Universe when they dissipate deep inside the horizon before recombination. Such an energy injection turns into an additional photon temperature perturbation. We invest
As well as primary fluctuations, CMB temperature maps contain a wealth of additional information in the form of secondary anisotropies. Secondary effects that can be identified with individual objects, such as the thermal and kinetic Sunyaev-Zeldovic
Searching for the signal of primordial gravitational waves in the B-modes (BB) power spectrum is one of the key scientific aims of the cosmic microwave background (CMB) polarization experiments. However, this could be easily contaminated by several f
The Chern-Simons term, through which the cosmic Axion-like field couples to the electromagnetic field, has the effect to rotate CMB polarization directions and to break the CPT symmetry. This rotation will change the CMB power spectra, no matter isot
Detection of B-mode polarization of the cosmic microwave background (CMB) radiation is one of the frontiers of observational cosmology. Because they are an order of magnitude fainter than E-modes, it is quite a challenge to detect B-modes. Having mor