ﻻ يوجد ملخص باللغة العربية
We calculate the effective temperature ($T_{rm eff}$) of ionizing star(s), oxygen abundance of the gas phase $(rm O/H)$, and the ionization parameter $U$ for a sample of H,{sc ii} regions located in the disks of 59 spiral galaxies in the 0.005 < z < 0.03 redshift range. We use spectroscopic data taken from the CALIFA data release 3 (DR3) and theoretical (for $T_{rm eff}$ and $U$) and empirical (for O/H) calibrations based on strong emission-lines. We consider spatial distribution and radial gradients of those parameters in each galactic disk for the objects in our sample. Most of the galaxies in our sample ($sim70$ %) shows positive $T_{rm eff}$ radial gradients even though some them exhibit negative or flat ones. The median value of the $T_{rm eff}$ radial gradient is 0.762 kK/$R_{25}$. We find that radial gradients of both $log U$ and $T_{rm eff}$ depend on the oxygen abundance gradient, in the sense that the gradient of $log U$ increases as $log(rm O/H)$ gradient increases while there is an anti-correlation between the gradient of $T_{rm eff}$ and the oxygen abundance gradient. Moreover, galaxies with flat oxygen abundance gradients tend to have flat $log U$ and $T_{rm eff}$ gradients as well. Although our results are in agreement with the idea of the existence of positive $T_{rm eff}$ gradients along the disk of the majority of spiral galaxies, this seems not to be an universal property for these objects.
Medium-resolution spectra from 3650 angstroms to 10,000 angstroms are presented for 96 giant H II regions distributed in 20 spiral galaxies. We have calculated two separate grids of photoionization models, adopting single-star atmospheres (Kurucz) an
I present recent and forthcoming works to model the CALIFA HII region using photoionization models. The first results are obtained with ad-hoc models (combining parameter determination by model fitting and strong line methods) while the next ones wil
Helium is the second most common chemical species in the Universe. The study of helium abundance has the potential to unravel the chemical evolution of and within galaxies. In this study, we provide an empirical calibration for the singly ionized hel
Photoionization models of HII regions require as input a description of the ionizing SED and of the gas distribution, in terms of ionization parameter U and chemical abundances (e.g. O/H and N/O). A strong degeneracy exists between the hardness of th
We present a new catalog of HII regions based on the integral field spectroscopy (IFS) data of the extended CALIFA and PISCO samples. The selection of HII regions was based on two assumptions: a clumpy structure with high contrast of H$alpha$ emissio