ﻻ يوجد ملخص باللغة العربية
DY Gao solely or together with some of his collaborators applied his Canonical duality theory (CDT) for solving a class of unconstrained optimization problems, getting the so-called triality theorems. Unfortunately, the double-min duality from these results published before 2010 revealed to be false, even if in 2003 DY Gao announced that certain additional conditions are needed for getting it. After 2010 DY Gao together with some of his collaborators published several papers in which they added additional conditions for getting double-min and double-max dualities in the triality theorems. The aim of this paper is to treat rigorously this kind of problems and to discuss several results concerning the triality theory obtained up to now.
The Fujitsu Digital Annealer (DA) is designed to solve fully connected quadratic unconstrained binary optimization (QUBO) problems. It is implemented on application-specific CMOS hardware and currently solves problems of up to 1024 variables. The DAs
In this paper we focus on the unconstrained binary quadratic optimization model, maximize x^t Qx, x binary, and consider the problem of identifying optimal solutions that are robust with respect to perturbations in the Q matrix.. We are motivated to
We present a gradient-based algorithm for unconstrained minimization derived from iterated linear change of basis. The new method is equivalent to linear conjugate gradient in the case of a quadratic objective function. In the case of exact line sear
Quadratic Unconstrained Binary Optimization models are useful for solving a diverse range of optimization problems. Constraints can be added by incorporating quadratic penalty terms into the objective, often with the introduction of slack variables n
We provide a condition-based analysis of two interior-point methods for unconstrained geometric programs, a class of convex programs that arise naturally in applications including matrix scaling, matrix balancing, and entropy maximization. Our condit