ﻻ يوجد ملخص باللغة العربية
The observed rotation measures (RMs) towards the galactic centre magnetar and towards Sagittarius A* provide a strong constraint on MHD models of the galactic centre accretion flow, probing distances from the black hole separated by many orders of magnitude. We show, using 3D simulations of accretion via magnetized stellar winds of the Wolf-Rayet stars orbiting the black hole, that the large, time-variable RM observed for the pulsar PSR J1745-2900 can be explained by magnetized wind-wind shocks of nearby stars in the clockwise stellar disc. In the same simulation, both the total X-ray luminosity integrated over 2-10$$, the time variability of the magnetars dispersion measure, and the RM towards Sagittarius A* are consistent with observations. We argue that (in order for the large RM of the pulsar to not be a priori unlikely) the pulsar should be on an orbit that keeps it near the clockwise disc of stars. We present a 2D RM map of the central 1/2 parsec of the galactic centre that can be used to test our models. Our simulations predict that Sgr A* is typically accreting a significantly ordered magnetic field that ultimately could result in a strongly magnetized flow with flux threading the horizon at $sim$ 10$%$ of the magnetically arrested limit.
We report on simultaneous observations of the magnetar SGR J1745-2900 at frequencies $ u = 2.54$ to $225,rm{GHz}$ using the Nancay 94-m equivalent, Effelsberg 100-m, and IRAM 30-m radio telescopes. We detect SGR J1745-2900 up to 225 GHz, the highest
Polarised radio emission from PSR J1745-2900 has already been used to investigate the strength of the magnetic field in the Galactic Centre, close to Sagittarius A*. Here we report how persistent radio emission from this magnetar, for over four years
We present the X-ray timing and spectral evolution of the Galactic Center magnetar SGR J1745-2900 for the first ~4 months post-discovery using data obtained with the Nuclear Spectroscopic Telescope Array (NuSTAR)} and Swift observatories. Our timing
We report on 3.5 years of Chandra monitoring of the Galactic Centre magnetar SGR J1745-2900 since its outburst onset in April 2013. The magnetar spin-down has shown at least two episodes of period derivative increases so far, and it has slowed down r
Sgr A* is currently being fed by winds from a cluster of gravitationally bound young mass-loosing stars. Using observational constraints on the orbits, mass loss rates and wind velocities of these stars, we numerically model the distribution of gas i