Measurements in Interstellar Space of Galactic Cosmic Ray Isotopes of Li, Be, B and N, Ne Nuclei Between 40-160 MeV/nuc by the CRS Instrument on Voyager 1


الملخص بالإنكليزية

In this paper we report a study of the isotopic composition of Li, Be, B and N, Ne nuclei from a 5 year time period beyond the heliopause using the CRS instruments on Voyager. By comparing the isotopic ratios, 15N/14N and 22Ne/20Ne outside the heliosphere as measured at Voyager, and which are found to be significantly lower than those measured at the same energy inside the heliosphere, we have provided strong evidence that cosmic rays of this energy have lost as much as 200 MeV/nuc or more in the solar modulation process. This is in accordance with the so called force field description of this overall modulation by Gleeson and Axford. The measurements at Voyager confirm that the unusual 14N and 22Ne cosmic ray source abundances relative to solar abundances made earlier inside the heliosphere extend to the lower energies not accessible from near Earth measurements. The low energy Li, Be and B nuclei, which are believed to be purely secondary nuclei, are found to have a (previously unobservable) peak in the differential intensity spectrum at ~100 MeV/nuc. This is in agreement with propagation predictions. The intensities of these nuclei are ~10-20% higher than those predicted in a propagation model with a matter path length lambda = 9 g/cm2 at these low energies. The isotopic composition of Li, Be and B nuclei is also consistent with that expected from propagation through interstellar matter.

تحميل البحث