ﻻ يوجد ملخص باللغة العربية
This paper is concerned with the $p(x)$-Laplacian equation of the form begin{equation}label{eq0.1} left{begin{array}{ll} -Delta_{p(x)} u=Q(x)|u|^{r(x)-2}u, &mbox{in} Omega, u=0, &mbox{on} partial Omega, end{array}right. end{equation} where $OmegasubsetR^N$ is a smooth bounded domain, $1<p^-=min_{xinoverline{Omega}}p(x)leq p(x)leqmax_{xinoverline{Omega}}p(x)=p^+<N$, $1leq r(x)<p^{*}(x)=frac{Np(x)}{N-p(x)}$, $r^-=min_{xin overline{Omega}}r(x)<p^-$, $r^+=max_{xinoverline{Omega}}r(x)>p^+$ and $Q: overline{Omega}toR$ is a nonnegative continuous function. We prove that eqref{eq0.1} has infinitely many small solutions and infinitely many large solutions by using the Clarks theorem and the symmetric mountain pass lemma.
We prove the existence of infinitely many nonnegative solutions to the following nonlocal elliptic partial differential equation involving singularities begin{align} (-Delta)_{p(cdot)}^{s} u&=frac{lambda}{|u|^{gamma(x)-1}u}+f(x,u)~text{in}~Omega, o
In this paper, we consider the existence and asymptotic properties of solutions to the following Kirchhoff equation begin{equation}label{1} onumber - Bigl(a+bint_{{R^3}} {{{left| { abla u} right|}^2}}Bigl) Delta u =lambda u+ {| u |^{p - 2}}u+mu {|
We study boundary blow-up solutions of semilinear elliptic equations $Lu=u_+^p$ with $p>1$, or $Lu=e^{au}$ with $a>0$, where $L$ is a second order elliptic operator with measurable coefficients. Several uniqueness theorems and an existence theorem are obtained.
For a general class of autonomous quasi-linear elliptic equations on R^n we prove the existence of a least energy solution and show that all least energy solutions do not change sign and are radially symmetric up to a translation in R^n.
This paper is devoted to the study of periodic (in time) solutions to an one-dimensional semilinear wave equation with $x$-dependent coefficients under various homogeneous boundary conditions. Such a model arises from the forced vibrations of a nonho