ترغب بنشر مسار تعليمي؟ اضغط هنا

Implicit Dual-domain Convolutional Network for Robust Color Image Compression Artifact Reduction

92   0   0.0 ( 0 )
 نشر من قبل Bolun Zheng
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Several dual-domain convolutional neural network-based methods show outstanding performance in reducing image compression artifacts. However, they suffer from handling color images because the compression processes for gray-scale and color images are completely different. Moreover, these methods train a specific model for each compression quality and require multiple models to achieve different compression qualities. To address these problems, we proposed an implicit dual-domain convolutional network (IDCN) with the pixel position labeling map and the quantization tables as inputs. Specifically, we proposed an extractor-corrector framework-based dual-domain correction unit (DCU) as the basic component to formulate the IDCN. A dense block was introduced to improve the performance of extractor in DRU. The implicit dual-domain translation allows the IDCN to handle color images with the discrete cosine transform (DCT)-domain priors. A flexible version of IDCN (IDCN-f) was developed to handle a wide range of compression qualities. Experiments for both objective and subjective evaluations on benchmark datasets show that IDCN is superior to the state-of-the-art methods and IDCN-f exhibits excellent abilities to handle a wide range of compression qualities with little performance sacrifice and demonstrates great potential for practical applications.



قيم البحث

اقرأ أيضاً

Recent studies have used deep residual convolutional neural networks (CNNs) for JPEG compression artifact reduction. This study proposes a scalable CNN called S-Net. Our approach effectively adjusts the network scale dynamically in a multitask system for real-time operation with little performance loss. It offers a simple and direct technique to evaluate the performance gains obtained with increasing network depth, and it is helpful for removing redundant network layers to maximize the network efficiency. We implement our architecture using the Keras framework with the TensorFlow backend on an NVIDIA K80 GPU server. We train our models on the DIV2K dataset and evaluate their performance on public benchmark datasets. To validate the generality and universality of the proposed method, we created and utilized a new dataset, called WIN143, for over-processed images evaluation. Experimental results indicate that our proposed approach outperforms other CNN-based methods and achieves state-of-the-art performance.
Recently, both supervised and unsupervised deep learning methods have been widely applied on the CT metal artifact reduction (MAR) task. Supervised methods such as Dual Domain Network (Du-DoNet) work well on simulation data; however, their performanc e on clinical data is limited due to domain gap. Unsupervised methods are more generalized, but do not eliminate artifacts completely through the sole processing on the image domain. To combine the advantages of both MAR methods, we propose an unpaired dual-domain network (U-DuDoNet) trained using unpaired data. Unlike the artifact disentanglement network (ADN) that utilizes multiple encoders and decoders for disentangling content from artifact, our U-DuDoNet directly models the artifact generation process through additions in both sinogram and image domains, which is theoretically justified by an additive property associated with metal artifact. Our design includes a self-learned sinogram prior net, which provides guidance for restoring the information in the sinogram domain, and cyclic constraints for artifact reduction and addition on unpaired data. Extensive experiments on simulation data and clinical images demonstrate that our novel framework outperforms the state-of-the-art unpaired approaches.
For the task of metal artifact reduction (MAR), although deep learning (DL)-based methods have achieved promising performances, most of them suffer from two problems: 1) the CT imaging geometry constraint is not fully embedded into the network during training, leaving room for further performance improvement; 2) the model interpretability is lack of sufficient consideration. Against these issues, we propose a novel interpretable dual domain network, termed as InDuDoNet, which combines the advantages of model-driven and data-driven methodologies. Specifically, we build a joint spatial and Radon domain reconstruction model and utilize the proximal gradient technique to design an iterative algorithm for solving it. The optimization algorithm only consists of simple computational operators, which facilitate us to correspondingly unfold iterative steps into network modules and thus improve the interpretablility of the framework. Extensive experiments on synthesized and clinical data show the superiority of our InDuDoNet. Code is available in url{https://github.com/hongwang01/InDuDoNet}.%method on the tasks of MAR and downstream multi-class pelvic fracture segmentation.
We present a general technique that performs both artifact removal and image compression. For artifact removal, we input a JPEG image and try to remove its compression artifacts. For compression, we input an image and process its 8 by 8 blocks in a s equence. For each block, we first try to predict its intensities based on previous blocks; then, we store a residual with respect to the input image. Our technique reuses JPEGs legacy compression and decompression routines. Both our artifact removal and our image compression techniques use the same deep network, but with different training weights. Our technique is simple and fast and it significantly improves the performance of artifact removal and image compression.
197 - Tao Wang , Wenjun Xia , Zexin Lu 2021
Due to the presence of metallic implants, the imaging quality of computed tomography (CT) would be heavily degraded. With the rapid development of deep learning, several network models have been proposed for metal artifact reduction (MAR). Since the dual-domain MAR methods can leverage the hybrid information from both sinogram and image domains, they have significantly improved the performance compared to single-domain methods. However,current dual-domain methods usually operate on both domains in a specific order, which implicitly imposes a certain priority prior into MAR and may ignore the latent information interaction between both domains. To address this problem, in this paper, we propose a novel interactive dualdomain parallel network for CT MAR, dubbed as IDOLNet. Different from existing dual-domain methods, the proposed IDOL-Net is composed of two modules. The disentanglement module is utilized to generate high-quality prior sinogram and image as the complementary inputs. The follow-up refinement module consists of two parallel and interactive branches that simultaneously operate on image and sinogram domain, fully exploiting the latent information interaction between both domains. The simulated and clinical results demonstrate that the proposed IDOL-Net outperforms several state-of-the-art models in both qualitative and quantitative aspects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا