ﻻ يوجد ملخص باللغة العربية
Low-energy partial-wave $pi N$ scattering data is reexamined with the help of the production representation of partial-wave $S$ matrix, where branch cuts and poles are thoroughly under consideration. The left-hand cut contribution to the phase shift is determined, with controlled systematic error estimates, by using the results of $mathcal{O}(p^3)$ chiral perturbative amplitudes obtained in the extended-on-mass-shell scheme. In $S_{11}$ and $P_{11}$ channels, severe discrepancies are observed between the phase shift data and the sum of all known contributions. Statistically satisfactory fits to the data can only be achieved by adding extra poles in the two channels. We find that a $S_{11}$ resonance pole locates at $sqrt{z_{r}}=(0.895pm0.081)-(0.164pm0.023)i$ GeV, on the complex $s$-plane. On the other hand, a $P_{11}$ virtual pole, as an accompanying partner of the nucleon bound-state pole, locates at $sqrt{z_{v}}=(0.966pm0.018)$ GeV, slightly above the nucleon pole on the real axis below threshold. Physical origin of the two newly established poles is explored to the best of our knowledge. It is emphasized that the $mathcal{O}(p^3)$ calculation greatly improves the fit quality comparing with the previous $mathcal{O}(p^2)$ one.
We present a dispersive representation of the $gamma Nrightarrow pi N$ partial-wave amplitude based on unitarity and analyticity. In this representation, the right-hand-cut contribution responsible for $pi N$ final-state-interaction effect are taken
A new unitarization approach incorporated with chiral symmetry is established and applied to study the $pi K$ elastic scatterings. We demonstrate that the $kappa$ resonance exists, if the scattering length parameter in the I=1/2, J=0 channel does not
We have developed a model for the N N --> N N pi pi reaction and evaluated cross sections for the different charged channels. The low energy part of those channels where the pions can be in an isospin zero state is dominated by N* excitation, driven
We present in this talk a recent investigation on $phi$ photoproduction, emphasizing the rescattering effects of the $KLambda^*$ channel near the threshold region. We discuss the results of the differential cross section and the angular distributions.
We study the pi N --> phi N reaction close to the phi N threshold within the chiral unitary approach, by combining the pi^- p --> K^+ Sigma^-, pi^- p --> K^0 Sigma^0 and pi^- p --> K^0 Lambda amplitudes with the coupling of the phi to the K component