ﻻ يوجد ملخص باللغة العربية
Exotic nuclei are characterized by a number of neutrons (or protons) in excess relative to stable nuclei. Their shell structure, which represents single-particle motion in a nucleus, may vary due to nuclear force and excess neutrons, in a phenomenon called shell evolution. This effect could be counterbalanced by collective modes causing deformations of the nuclear surface. Here, we study the interplay between shell evolution and shape deformation by focusing on the magnetic moment of an isomeric state of the neutron-rich nucleus 75Cu. We measure the magnetic moment using highly spin-controlled rare-isotope beams and achieving large spin alignment via a two-step reaction scheme that incorporates an angular-momentum-selecting nucleon removal. By combining our experiments with numerical simulations of many-fermion correlations, we find that the low-lying states in 75Cu are, to a large extent, of single-particle nature on top of a correlated 74Ni core. We elucidate the crucial role of shell evolution even in the presence of the collective mode, and within the same framework, we consider whether and how the double magicity of the 78Ni nucleus is restored, which is also of keen interest from the perspective of nucleosynthesis in explosive stellar processes.
Alpha particles emitted from an excited projectile-like fragment (PLF*) formed in a peripheral collision of two intermediate-energy heavy ions exhibit a strong preference for emission towards the target-like fragment (TLF). The interplay of the initi
Nuclear magic numbers, which emerge from the strong nuclear force based on quantum chromodynamics, correspond to fully occupied energy shells of protons, or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and n
We analyze the ability of the three different Liquid Drop Mass (LDM) formulas to describe nuclear masses for nuclei in various deformation regions. Separating the 2149 measured nuclear species in eight sets with similar quadrupole deformations, we sh
The nuclear magnetic moment of the ground state of 57Cu has been measured to be 2.00 +/- 0.05 nuclear magnetons (nm) using the beta-NMR technique. Together with the known magnetic moment of the mirror partner 57Ni, the spin extraction value was extra
The Self-similar-structure shell model (SSM) comes from the evolution of the conventional shell model (SM) and keeps the energy level of SM single particle harmonic oscillation motion. In SM, single particle motion is the positive harmonic oscillatio